Evaluation of SDN Controller and Its Impact on
Information-Centric Networking (ICN)

Overview, Use Cases and Performance Evaluation

Karim Md Monjurul
27-12-2018

School of Computer Science, Beijing Institute of Technology

Table of contents

1. Introduction

2. Programming Languages

3. Components and Use Cases of SDN Controllers

4. Performance Evaluation of SDN Controller

5. SDN Controller in an ICN Scenario

6. Conclusion

Introduction

What is an SDN Controller

An SDN controller

- is known to be the "brain” of the network in a software-defined
networking environment

- relays information to the switches/routers through Southbound
API (SBI) and the applications logic through Northbound API
(NBI)

- can be a single application that manages network/traffic/packet
flows to enable intelligent and automated networking

- also known as Network Operating System (NOS) that go beyond
managing flow control and does multiple operations of the
existing network

General Overview of SDN Architecture

Application Layer (Management Plane)
Network] [Network] [Mobility]

Security] [Traffic] [Load]
icati Control Balanci

Northbound API
(REST, JSON, Franetic, etc.)

Control Layer (Control Plane)

Floodlight Floodlight
o K
East West bound API
OpenDaylight (AMQP, Raft, Zookeeper, etc.) OpenDa ht

Southbound API
(OpenFlow, POF, PCEP, ForCES, etc.)

Infrastructure Layer (Data Plane)

[Physical Devices] [Virtual Devices [Access Points]

Visual Representation of an SDN Controller

select switch | |5tart+un~arding

Create layer 2 frame
Apply packet inspection

Apply QoS

All switches to
startup settings

Speed up Slow down
forwarding forwarding

www.slideshare.net/PetervanderVoort1/sdn-beyond-the-obvious-29656744

http://www.slideshare.net/PetervanderVoort1/sdn-beyond-the-obvious-29656744

Communication Flows between Controller and Switch

4% Generate Packet_In message ‘

‘ Host request to the OF switch ‘ i
i ‘ Send Packet_In to the controller ‘
‘ OF switch check for the match field ‘ i

‘ Controller check the packet header ‘

l

Create rules for Packet_In message ‘

l

‘ Send the flow rules to the OF switch ‘

Yes i

Apply the flow rules to the packet ‘ Generate Packet_Out message ‘

No

Topology discovery in Software Defined Network” IEEE Communication Survey and Tutorial 2017 Vol 19 5

https://ieeexplore.ieee.org/document/7534866

Programming Languages

Programming Languages of SDN Controller (C and C++)

- NOX was written using almost 32,000 lines of C++ codes

- C++ based controllers performs better in the low-level
environment

- Better synchronization with Faster Packet Processing Data Planes
like DPDK (Data Plane Development Kit) and Netmap
(framework for fast packet 1/0)

- C++ was used to build the core module of a number of
controllers like Ethane, NOX, Rosemary, OpenMUL, DCFabric,
Onix

Programming Languages of SDN Controller (Java)

- Java-based controllers are ahead of the competition when it
comes to Multithreading and Parallelism

- Automatic Memory Management and Platform Independency
are two primary factors behind the selection of Java-based
industrial-ready controllers

- Two of the most widely adopted controllers developed in Java.
ONOS has been widely utilized in Wide Area Networks whereas
OpenDaylight is more suitable for Data Centers and Optical
Network

Programming Languages of SDN Controller (Python and O

- Python-based Controller offers faster Compilation and
Debugging

- Offers Simplified Scripting and Stitching together other pieces of
code

- Extensive range of other programming languages used to
develop SDN Controllers. Example: JavaScript, Ruby, Haskell, Go
and Erlang

Components and Use Cases of
SDN Controllers

SDN APPLICATION PLANE

DASHBOARD FORWARDING LOAD BALANCE

’ FIREWALL ‘

VIRTUALIZATION ‘

NORTHBOUND INTERFACE

/ SDN CONTROL PLANE (CONTROLLER) \

CORE MODULES

LINK
DISCOVERY

TOPOLOGY
MANAGER

DECISION
MAKING

ADDITIONAL MODULES

EAST-WEST BOUND INTERFACE
SYNC WITH THIRD-PARTY APPS

PROCESSED

QUEUE QUEUE

PEERING WITH OTHER CONTROLLER
EAST-WEST BOUND INTERFACE

’ RECEIVED ‘

l SOUTHBOUND INTERFACE ‘

N LI J

PHYSICAL WIRELESS OPTICAL VIRTUAL
SWITCH SWITCH SWITCH SWITCH

SDN DATA PLANE

NOX Architecture

ul
Statistics Wl e Directory Web Sarvices Topology
Tracking yEng Management discovery
Components Storage Routing Host tracking Python
(ORE Component APl
cﬁ:)rggm%e Event Harness OpenFlow API

Asynchronous /0

Socket 1/0

File 1/0

OpenDaylight Component

PEN
s OpenDaylight Fluorine Release

Orchestration Applications Control Plane Applications Other Applications (e.g. Vendor U1) Third Party Apps
OpenDaylight APIs (REST/RESTCONF/NETCONF)
Platform Services Network Services And Applications
* Authentication, Authorization and Container Orchestration Engine + Neutron Service
Accounting Genius Framework + Sarvice Function Chaining
* Data Export Import HoneycomblVirtual Bridge Domain + Transport PCE*
+ Infrastructure Utilities LISP Flow Mapping Service . Controller

JSON-RPC Extension Services/Applications.

+ Time Series Data Repository

- User Network Interface Manager
* Network Virtualization

Data Store (Config & Operational) OpenDaylight Platform (Yangtools, MD-SAL) Messaging (Notifications / RPCs)

‘Southbound Interfaces &
Protocol Plugins

EebN EeES Febe Eebe bebe S

* First release for the project
** Notincluded in Fluorine distribution - separate download

1

ONOS System Components

=T T T B .
T T T

| | I I T

Feature comparison of Different Controllers

Interfaces SB SB (OpenFlow) +SB SB (OpenFlow) NB SB (OpenFlow &
(OpenFlow) Management (OpenFIow] (Java & REST)
(OVSDB JSON)
Virtualization

GUI
REST API

Productivity
Open Source
Documentation

Language Support

Modularity

Platform Support

TLS Support
Age
OpenFlow Support

OpenStack Networking
(Quantum)

Mininet & Open

Mininet & Open
vSwitch

vSwitch
Yes Yes (Initial Phase)
No Yes (For SB Interface
only)
Medium Medium
Yes Yes
Poor Medium
Python Python-Specific +
Message Passing
Reference
Medium Medium
Linux, Mac OS, and Most Supported on
Windows Linux
Yes Yes
1 year 1 year
OF v1.0 OFv1.0v2.0v3.0 &
Nicira Extensions
NO

Strong

Built-in Emulation
Virtual Tool

No

No

High
Yes
Medium

C/Ruby
Medium
Linux Only

Yes
2 years

OF v1.0

Weak

Mininet & Open
vSwitch

Web Ul (Using REST)

Yes

Medium
Yes
Good

Java + Any language
that uses REST

High
Linux, Mac &
Windows

Yes
2 years

OF v1.0

Medium

Others SB Protocols)
NB (REST & Java RPC)

Mininet & Open
vSwitch
Yes

Yes

Medium
Yes
Medium

Java
High
Linux

Yes
2 Month
OF v1.0

Medium

Application comparison of Different Co

Applicability OpenDaylight ONOS Ryu Trema
Documentation Good Medium Poor Poor
SB (OpenFlow) SB (OpenFlow, SB (OpenFlow)
NB (REST, JAVA RPC) Management via
Management interfaces OVSDB and
JSON)
NB (REST)
Routing Yes Yes Yes Yes
Traffic Engineering Yes Partial Partial Partial
Service Insertion/Chaining Yes Partial Partial No
Load Balancing Yes Partial Partial No
Network Monitoring Yes Yes Yes Partial
Modularity High Medium Medium Medium
TLS Support Yes Yes Yes Yes
Openstack Networking Medium Medium High Week
Open Source Yes Yes Yes Yes
GUI Yes Yes Yes with RES via | No

ryu.app.gui_topol
ogy.gui_topology

14

SDN Controllers in Different Sectors

= &

Visualization Optimization Automation

SDN Controllers

Multilayer Multidomain

X % 8 QX @

IP Microwave Optical WAN Transport Data Center

SDN Controller in Optical and Wide Area Network

Network Load balancing ‘Abstraction and
Sicing and Forwarding Virtualization

Slicing g PCE

Application Plane

'
'

'

'

[Netwmk] [Domain] [Loadbalanclng] [End-to-end] !

' ’ i '

and
'
’

5 =
=
«—>
East West API East West API ®

Topology [Database] Flow-Table Flow Metrics
i Mapping | [_Collection
N

Control Plane

Control Plane

M

- Southbound API R

H LTE/5G Broadband MPLS 1

Data Plane

(e OF Agent D Optical Switch

D Layer 2 Switch E} GMPLS Switch

Branches Remote Sites Data Centers

N Data Plane .

16

Performance Evaluation of SDN
Controller

Why Evaluating the Performance of a Controller

- To Maximize the Performance with Available Physical Resources
- To Evaluate Controller-Switch Communication Efficiency

- To Understand the Impact of Topology

- To Measure the Reliability of Trustability of Controller

Metrics to be Considered Evaluating Controllers

- Throughput

- Latency

- CPU and Memory Utilization
- Round Trip Time

- And Many More

Taxonomy of Evaluating a Controller

of ing SDN Ci

Operating
Environment
Standalone

Network
Topology

Centralized
Controllers

——‘[Linear

Clustered

Distributed
Controllers

_m

—[Traffic Profile]

Compatibility
Version

Others

Controller]

Observation
Point

FTP, TELNET

19

Lists of Performance Testing Tool

- CBench

- PktBlaster

- OFNet

- Others: WCbench, OFCBenchmark, OFCProbe, HCProbe.

20

What is CBench

- Cbench emulates a configurable number of OpenFlow switches
that all communicate with a single OpenFlow controller

- Each emulated switch sends a configurable number of new flow
messages to the Controllers

- Waits for the appropriate flow setup responses and records the
difference in time between request and response

- It supports two modes of operation: Latency and Throughput

21

Key Features of PktBlaster

- Real world Network Emulation for SDN

- Flow-mod and Packet-out based Performance Benchmarking
- Supports both OpenFlow 1.0 and 1.3

- User-friendly GUI

- Comprehensive Test Results, Analysis and Comparison

22

Key Features of OFNet

- Function as a Network Emulator, Debugging Framework and
Controller Testing Tool

- Tests can be done through Customized Topology
- Features In-built Traffic Generator

- Have Additional Metrics other than Latency and Throughput. For
Example: Flow Generations Rate, Flow Failure Rate, vSwitch CPU
utilization and Average RTT

23

Architecture of Benchmarking Tool

Controller's Modules

DECISION
TOPOLOGY STORAGE MAKING
LINK DATA FLOW
DISCOVERY CONTROL TABLE
RECEIVED | |PROCESSED SENT
QUEUE QUEUE QUEUE
Packet-In Flows Packet-Out Flows

OpenFlow-based Session through TCP or UDP or ARP

CEe"ch Framework / PkiBlaster Framework \ f OFNet Framework \

aas BEE|~lx6e

Terminal-based Control

Gui-based Control Monitoring Window

Y W W
8- ‘_’ ‘.’..
Fan Fan
__ Emulated vSwitches " Traffic Generator
ooo| (ooo| (ooo
ooo| (ooo| (ooo

Emulated Hosts K Flow, Meter and Group Table/ TOP0|09V

24

Benchmark Parameters

Tool Parameter Values
Number of Switch 2,4,8, 16
Number of Test Loops 20
CBench Test Duration 300 sec
MAC Addresses per Switch (Hosts) 64
Delay between Test Intervals 2 sec
Number of Switch 2,4, 8,16
Test Duration 300 sec
Number of Iterations 5
PktBlaster | Traffic Profile TCP
Ports per Switch (Hosts) 64
Flow Counts per Table 65536 (Default)
Packet Length 64 bytes
Number of Hosts 20
Number of Switchs 7
OFNet Desired Traffic Rate 100 flow/sec
Flow measured by Packet-out & Flow-Mod
Total Test Duration 300 sec

25

Performance Comparison using CBench

100 %0 -
R Ty s pey— Py T parey— T ey—
e R e
% w
w
0
7
~ e
E E
feo ‘
5 £
o
5
30
%
20
2
0 w0
o o
1 s 10 15 0 2 n s 16
1028 1024
R —— p ry——peTr—pey— Py QT ooy gy pey—
i — i pd— U

Flow response rate (fows/sec)

No. of iteration

Flow response rate (Rowsfsec)

No.of switch

26

Performance Comparison using PktBlaster

1 s
WO ool O10S B operil e haesro e oK ool M ONoS B OperiUL B st
P — S i Rt = = W=

s

»

2

u

us

0 B

z En

[t

£ E10s

) g

H H

H £os

;
s
.
os
s
.
. s
o of siches
1024 -
T T T R 102
Lo S S~ A= [Ny e ST re—
= "a= Senion =

525

£ T 256

H H

< i

:

i H

Ea
1

3
No.of iterations.
No. of switches.

27

Performance Comparison using OFNet

10000 w00
O ioodlolt m ON0S e OptrUL e Wasse Vou mm odlont T ON0S = OperL e Hacsro =
P R — it R — i —]
0
1000
g
g f
H g
£ w0 H
10
!
m 120 100 200 300 10 o0 120 100 200 300
100 10000
\ou s rioodl g mm " Ovs B Opervl Em acsto T R ey gV =y —
T Seaton = e— e —
%0
1000
~ 100
Do
- 1
o1

120 180
Time (sec)

120
Time (sec)

28

SDN Controller in an ICN Scenario

Why We Need to Combine SDN and ICN

- Automated and Intelligent Content Delivery

- Content-based Mobility Support in 5G and Vehicular Network
- In-network Caching based on Content Popularity
- Content-based Traffic Engineering

29

Types of SDN-ICN Architecture

- Centralized Architecture
- Distributed Architecture
- Clean-State Architecture
- Overlay and Underlay Architecture

30

SDN-ICN Architecture

i Contraller Modules.
cansimer2 N

olor Liooology detecton

fowardng

|
|
N

i

&
cOhsamer 1 NDN Node 1

NON Node 2 NON Node 3

i

SDN-ICN Architecture with Centralized Controller

Frocucer 3

| D1 capt capi capi cspi csd1 cedt

Domain 1

Domain 2

stor/.* s hoseor

ciD2 c2p2 Cabe Cape CSD2_CSD2 D2

SDN-ICN

with Distri Ci

31

Controllers’ Role in SDN-ICN Architecture

- Topology Discovery and Statistics Collection
- Name-based Content Forwarding

- Content Discovery and Caching

32

Intended Research Findings from SDN-ICN Implementatio

- Improve Caching Scheme
- Controller-to-Controller Communication through Contents

- Improved Content Security

33

Tools We Intend to Use

- Testbed using ndnSIM
- Controller App
- ICN Node App

34

Conclusion

Final Words-1

Google had big problems Regarding High financial cost Managing
their Data Centers

- Hardware and software upgrade

- Over provisioning (fault tolerant)

- Manage large backup traffic

- Time to manage individual switch

- A lot of men power to manage the infrastructure

35

Final Words-2

What are the Problems They were having

- Delay caused by rebuilding connections after Link Failure
- Slow to rebuild the routing tables after Link Failure

- Difficult to Predict what the New Network may perform

36

Final Words-3

How They Solve these Problems

- Built their hardware and wrote their own software for their
internal data centers

- Surprised the industries when Google announced SDN was
possible in production

How did they do it?

B4: Experience with a Globally-Deployed
Software Defined WAN

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Holzle, Stephen Stuart and Amin Vahdat
Google, Inc.
b4-sigcomm@google.com

37

Questions?

37

	Introduction
	Programming Languages
	Components and Use Cases of SDN Controllers
	Performance Evaluation of SDN Controller
	SDN Controller in an ICN Scenario
	Conclusion

