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Introduction



What is an SDN Controller

An SDN controller

• is known to be the ”brain” of the network in a software-defined
networking environment

• relays information to the switches/routers through Southbound
API (SBI) and the applications logic through Northbound API
(NBI)

• can be a single application that manages network/traffic/packet
flows to enable intelligent and automated networking

• also known as Network Operating System (NOS) that go beyond
managing flow control and does multiple operations of the
existing network
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General Overview of SDN Architecture
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Visual Representation of an SDN Controller
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Communication Flows between Controller and Switch
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Figure 2: A flow chart for Packet-In message  

Moreover, the controller can modify the packet header information in  real-time 

by  modifying source/destination addresses and ports [41]. This characteristic of the 

controller provides flexibility and reliability to the network. Similarly, the 

northbound API connects the controller to various network applications that deploy 

algorithms and protocols to operate the SDN [42]. Unlike, the  southbound API, the  

standard northbound API is not available yet, which presents  several security 

threats [43, 44]. The eastbound and westbound API’s manage the distributed 

controllers in SDN [7]. That is, multiple controllers can be deployed in SDN to 

manage different parts of the network [45] due to different assigned functions such 

as load balancing, monitoring and task allocation. 

2.2 Threats to Software Defined Networks planes 

The centralized control, network abstraction, and software-based network 

changes attract malicious users to perform attacks on SDN. Attacks can be on the 1) 

network devices in the infrastructure plane, 2) control modules in the control plane, 

3)  network devices in the application plane, or 4)  different API’s in the SDN [8]. In 

this section, we discuss and classify different attacks as illustrated in Figure 3. 

Moreover, we explain attacks performed on various interfaces of SDN. Table 1 

illustrates the existing available solutions for each attack in the SDN planes and 

interfaces.  

Topology discovery in Software Defined Network” IEEE Communication Survey and Tutorial 2017 Vol 19 5

https://ieeexplore.ieee.org/document/7534866


Programming Languages



Programming Languages of SDN Controller (C and C++)

• NOX was written using almost 32,000 lines of C++ codes
• C++ based controllers performs better in the low-level
environment

• Better synchronization with Faster Packet Processing Data Planes
like DPDK (Data Plane Development Kit) and Netmap
(framework for fast packet I/O)

• C++ was used to build the core module of a number of
controllers like Ethane, NOX, Rosemary, OpenMUL, DCFabric,
Onix
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Programming Languages of SDN Controller (Java)

• Java-based controllers are ahead of the competition when it
comes to Multithreading and Parallelism

• Automatic Memory Management and Platform Independency
are two primary factors behind the selection of Java-based
industrial-ready controllers

• Two of the most widely adopted controllers developed in Java.
ONOS has been widely utilized in Wide Area Networks whereas
OpenDaylight is more suitable for Data Centers and Optical
Network
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Programming Languages of SDN Controller (Python and Others)

• Python-based Controller offers faster Compilation and
Debugging

• Offers Simplified Scripting and Stitching together other pieces of
code

• Extensive range of other programming languages used to
develop SDN Controllers. Example: JavaScript, Ruby, Haskell, Go
and Erlang
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Components and Use Cases of
SDN Controllers



Core Components of an SDN Controller
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NOX Architecture
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OpenDaylight Components
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ONOS System Components
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Feature comparison of Different Controllers
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Application comparison of Different Controllers
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SDN Controllers in Different Sectors
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SDN Controller in Optical and Wide Area Network
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Performance Evaluation of SDN
Controller



Why Evaluating the Performance of a Controller

• To Maximize the Performance with Available Physical Resources
• To Evaluate Controller-Switch Communication Efficiency
• To Understand the Impact of Topology
• To Measure the Reliability of Trustability of Controller
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Metrics to be Considered Evaluating Controllers

• Throughput
• Latency
• CPU and Memory Utilization
• Round Trip Time
• And Many More
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Taxonomy of Evaluating a Controller
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Lists of Performance Testing Tool

• CBench
• PktBlaster
• OFNet
• Others: WCbench, OFCBenchmark, OFCProbe, HCProbe.
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What is CBench

• Cbench emulates a configurable number of OpenFlow switches
that all communicate with a single OpenFlow controller

• Each emulated switch sends a configurable number of new flow
messages to the Controllers

• Waits for the appropriate flow setup responses and records the
difference in time between request and response

• It supports two modes of operation: Latency and Throughput

21



Key Features of PktBlaster

• Real world Network Emulation for SDN
• Flow-mod and Packet-out based Performance Benchmarking
• Supports both OpenFlow 1.0 and 1.3
• User-friendly GUI
• Comprehensive Test Results, Analysis and Comparison
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Key Features of OFNet

• Function as a Network Emulator, Debugging Framework and
Controller Testing Tool

• Tests can be done through Customized Topology
• Features In-built Traffic Generator
• Have Additional Metrics other than Latency and Throughput. For
Example: Flow Generations Rate, Flow Failure Rate, vSwitch CPU
utilization and Average RTT
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Architecture of Benchmarking Tool
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Benchmark Parameters
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TABLE V: Parameters used in evaluation setup.
Tool Parameter Values

CBench

Number of Switch 2, 4, 8, 16
Number of Test Loops 20
Test Duration 300 sec
MAC Addresses per Switch (Hosts) 64
Delay between Test Intervals 2 sec

PktBlaster

Number of Switch 2, 4, 8, 16
Test Duration 300 sec
Number of Iterations 5
Traffic Profile TCP
Ports per Switch (Hosts) 64
Flow Counts per Table 65536 (Default)
Packet Length 64 bytes

OFNet

Number of Hosts 20
Number of Switchs 7
Desired Traffic Rate 100 flow/sec
Flow measured by Packet-out & Flow-Mod
Total Test Duration 300 sec

B. Benchmarking Capabilities

In this work we use the three of the tools, i.e. CBench,
PktBlaster, and OFNet, to evaluate different controllers. It is
important to note that none of the tools available can measure
all performance statistics. In most of the previous works and
the output of tools, the metrics are rather simplified. For
example, the throughput of a controller can be interpreted in
a number of different ways. Similarly, as shown in Table III,
the latency can be determined using different metrics. The
columns on right side of table shows each individual metric
which can be directly measured, indirectly measured, or not
measurable by a specific tool.

VI. EVALUATION AND BENCHMARKING OF CONTROLLERS

This section discusses performance of 9 different controllers
using previously described benchmarking tools. To the best
of our knowledge, no previous work has compared such a
large number of controllers, and performed cross comparison
using different tools. The controllers evaluated are NOX,
POX, Floodlight, ODL, ONOS, Ryu, OpenMUL, Beacon,
and Maestro. The reason to select these out of previously
discussed 34, is the availability of controller source code or
implementation. The 3 benchmarking tools used are CBench,
PktBlaster, and OFNet. We use a virtualized environment to
emulate the controller and tools in separate virtual machines,
running on a 2.10 GHz i7-3612QM processor with 12 GB
of DDR3 RAM. Ubuntu 16.04.03 LTS is the base operating
system and 1 Gbps link connects the VMs.

It is important to note that all results are plotted as bar
graphs. This is done to increase visual understanding of the
reader. Overlapping nine different controller outputs in a single
plot were not only visually confusing, but also made it difficult
to infer any meaningful information.

A. Evaluation Setup

TableV shows the different parameters for evaluation setup.
It is important to note that the programmable parameters
in different tools are not identical, hence, we have tried to
best possible extent to make them similar. However, once the
parameters are set, all controllers use the same values.

CBench tests the performance by sending asynchronous
messages. For latency the messages are in series, i.e. it
send a packet in message to the emulated switch and waits
for a response before sending the next one. We execute

20 iterations with varying number of emulated switches to
observe the impact of switches on the controller. On the other
hand, with same parameters we test the throughput of the
running controller. However, the packets are not sent in series,
and requests are sent without waiting for a response. One
execution, CBench outputs the flow messages a controller can
handle per second. The results presented here are an average
of number of responses per second from all switches in that
execution.

PktBlaster utilizes the in-built TCP-based traffic emulation
profile that creates an OpenFlow session between the emulated
switch and the controller. Due to free edition of tool the
number of iterations is limited to 5. The nine controllers
are evaluated based on latency (flow installation rate) and
throughput (flow processing rate).

OFNet uses a custom tree-based topology consisting of 7
emulated switches and 20 virtual hosts. We limit the number
of hosts and switches due to limited resources available on
emulating machines. Inbuilt traffic generator is used, which
initiates and transfers multiple types of traffic, such as DNS,
Web, Ping, NFS, Multi-cast, Large-send, FTP and Telnet
among hosts in the emulated network much like Mininet
Emulation environment. Host 2, 12 and 20 act as DNS, NFS
and Multicast server respectively. We analyze metrics such as,
Round Trip Time, average flow setup latency, vSwitch CPU
utilization, number of flows missed by the controllers, number
of flows sent and received. OFNet provides analysis against
time, hence the average of 10 iteration is plotted against a 300
seconds simulation.

B. Latency Performance

1) CBench: We observe two different effects on latency
using CBench tool. First we observe the latency against
number of switches in topology, from 2 to 16. Figure 3a
shows that there are two distinct groups, one with high latency,
and one with significantly lower. An interesting observation
is the Ryu controller which has negligible impact on its
latency performance. Similarly, NOX and POX also show
minimal change in latency as the switches increase. However,
less latency does not translate to out-right winner, as the
capabilities of controller itself must also be considered. In this
regard, ODL, consistently performs in the middle and offers
a number of other feature as listed in Table I.

The second experiment observes the effect of tool’s own
performance on latency measurement. Here we change the
number of iterations while the number of switches is fixed at
16. Interestingly, the pattern in Figure 3b shows most of the
controllers to change their latency as the results are averaged-
out over a larger set of repetitions. The basic take-away from
this is that the setup environments effect on measurements
should never be disregarded. It may positively or negatively
impact the obtained results with the same parameters.

2) PktBlaster: Latency calculation using PktBlaster is also
done against increasing number of switches. Figure 3c shows
three distinct groups of controllers. NOX and POX show
minimum latency, while Floodlight, ODL, and ONOS have
the highest latency in this test. Ryu, OpenMUL, Maestro, and
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Performance Comparison using CBench
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Performance Comparison using PktBlaster
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Performance Comparison using OFNet
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SDN Controller in an ICN Scenario



Why We Need to Combine SDN and ICN

• Automated and Intelligent Content Delivery
• Content-based Mobility Support in 5G and Vehicular Network
• In-network Caching based on Content Popularity
• Content-based Traffic Engineering
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Types of SDN-ICN Architecture

• Centralized Architecture
• Distributed Architecture
• Clean-State Architecture
• Overlay and Underlay Architecture
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SDN-ICN Architecture
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Controllers’ Role in SDN-ICN Architecture

• Topology Discovery and Statistics Collection
• Name-based Content Forwarding
• Content Discovery and Caching
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Intended Research Findings from SDN-ICN Implementation

• Improve Caching Scheme
• Controller-to-Controller Communication through Contents
• Improved Content Security
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Tools We Intend to Use

• Testbed using ndnSIM
• Controller App
• ICN Node App
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Conclusion



Final Words-1

Google had big problems Regarding High financial cost Managing
their Data Centers

• Hardware and software upgrade
• Over provisioning (fault tolerant)
• Manage large backup traffic
• Time to manage individual switch
• A lot of men power to manage the infrastructure
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Final Words-2

What are the Problems They were having

• Delay caused by rebuilding connections after Link Failure
• Slow to rebuild the routing tables after Link Failure
• Difficult to Predict what the New Network may perform
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Final Words-3

How They Solve these Problems

• Built their hardware and wrote their own software for their
internal data centers

• Surprised the industries when Google announced SDN was
possible in production

How did they do it?

B4: Experience with a Globally-Deployed
Software Defined WAN
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ABSTRACT
We present the design, implementation, and evaluation of B4, a pri-
vate WAN connecting Google’s data centers across the planet. B4
has a number of unique characteristics: i) massive bandwidth re-
quirements deployed to a modest number of sites, ii) elastic traf-
�c demand that seeks to maximize average bandwidth, and iii) full
control over the edge servers and network, which enables rate limit-
ing and demand measurement at the edge. �ese characteristics led
to a So�ware De�ned Networking architecture using OpenFlow to
control relatively simple switches built from merchant silicon. B4’s
centralized tra�c engineering service drives links to near 100% uti-
lization, while splitting application �ows among multiple paths to
balance capacity against application priority/demands. We describe
experience with three years of B4 production deployment, lessons
learned, and areas for future work.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols

Keywords
Centralized Tra�c Engineering; Wide-Area Networks; So�ware-
De�ned Networking; Routing; OpenFlow

1. INTRODUCTION
Modern wide area networks (WANs) are critical to Internet per-

formance and reliability, delivering terabits/sec of aggregate band-
width across thousands of individual links. Because individual
WAN links are expensive and because WAN packet loss is typically
thought unacceptable,WANrouters consist of high-end, specialized
equipment that place a premium on high availability. Finally, WANs
typically treat all bits the same. While this has many bene�ts, when
the inevitable failure does take place, all applications are typically
treated equally, despite their highly variable sensitivity to available
capacity.

Given these considerations, WAN links are typically provisioned
to 30-40% average utilization. �is allows the network service
provider to mask virtually all link or router failures from clients.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

Such overprovisioning delivers admirable reliability at the very real
costs of 2-3x bandwidth over-provisioning and high-end routing
gear.
Wewere facedwith these overheads for building aWAN connect-

ing multiple data centers with substantial bandwidth requirements.
However, Google’s data center WAN exhibits a number of unique
characteristics. First, we control the applications, servers, and the
LANs all the way to the edge of the network. Second, our most
bandwidth-intensive applications perform large-scale data copies
from one site to another. �ese applications bene�t most from high
levels of average bandwidth and can adapt their transmission rate
based on available capacity.�ey could similarly defer to higher pri-
ority interactive applications during periods of failure or resource
constraint. �ird, we anticipated no more than a few dozen data
center deployments, making central control of bandwidth feasible.
We exploited these properties to adopt a so�ware de�ned net-

working (SDN) architecture for our data center WAN interconnect.
We were most motivated by deploying routing and tra�c engineer-
ing protocols customized to our unique requirements. Our de-
sign centers around: i) accepting failures as inevitable and com-
mon events, whose e�ects should be exposed to end applications,
and ii) switch hardware that exports a simple interface to program
forwarding table entries under central control. Network protocols
could then run on servers housing a variety of standard and custom
protocols. Our hope was that deploying novel routing, scheduling,
monitoring, andmanagement functionality and protocols would be
both simpler and result in a more e�cient network.
We present our experience deploying Google’s WAN, B4, using

So�ware De�ned Networking (SDN) principles and OpenFlow [31]
to manage individual switches. In particular, we discuss how we
simultaneously support standard routing protocols and centralized
Tra�c Engineering (TE) as our �rst SDN application. With TE, we:
i) leverage control at our network edge to adjudicate among compet-
ing demands during resource constraint, ii) use multipath forward-
ing/tunneling to leverage available network capacity according to
application priority, and iii) dynamically reallocate bandwidth in the
face of link/switch failures or shi�ing application demands. �ese
features allow many B4 links to run at near 100% utilization and all
links to average 70% utilization over long time periods, correspond-
ing to 2-3x e�ciency improvements relative to standard practice.
B4 has been in deployment for three years, now carries more traf-

�c than Google’s public facing WAN, and has a higher growth rate.
It is among the �rst and largest SDN/OpenFlow deployments. B4
scales tomeet application bandwidth demandsmore e�ciently than
would otherwise be possible, supports rapid deployment and iter-
ation of novel control functionality such as TE, and enables tight
integration with end applications for adaptive behavior in response
to failures or changing communication patterns. SDN is of course
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Questions?
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