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Introduction



What is an SDN Controller

An SDN controller

- is known to be the "brain” of the network in a software-defined
networking environment

- relays information to the switches/routers through Southbound
API (SBI) and the applications logic through Northbound API
(NBI)

- can be a single application that manages network/traffic/packet
flows to enable intelligent and automated networking

- also known as Network Operating System (NOS) that go beyond
managing flow control and does multiple operations of the
existing network



General Overview of SDN Architecture
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Visual Representation of an SDN Controller
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Communication Flows between Controller and Switch
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Programming Languages



Programming Languages of SDN Controller (C and C++)

- NOX was written using almost 32,000 lines of C++ codes

- C++ based controllers performs better in the low-level
environment

- Better synchronization with Faster Packet Processing Data Planes
like DPDK (Data Plane Development Kit) and Netmap
(framework for fast packet 1/0)

- C++ was used to build the core module of a number of
controllers like Ethane, NOX, Rosemary, OpenMUL, DCFabric,
Onix



Programming Languages of SDN Controller (Java)

- Java-based controllers are ahead of the competition when it
comes to Multithreading and Parallelism

- Automatic Memory Management and Platform Independency
are two primary factors behind the selection of Java-based
industrial-ready controllers

- Two of the most widely adopted controllers developed in Java.
ONOS has been widely utilized in Wide Area Networks whereas
OpenDaylight is more suitable for Data Centers and Optical
Network



Programming Languages of SDN Controller (Python and O

- Python-based Controller offers faster Compilation and
Debugging

- Offers Simplified Scripting and Stitching together other pieces of
code

- Extensive range of other programming languages used to
develop SDN Controllers. Example: JavaScript, Ruby, Haskell, Go
and Erlang



Components and Use Cases of
SDN Controllers
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NOX Architecture
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OpenDaylight Component
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Feature comparison of Different Controllers
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Application comparison of Different Co
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SDN Controllers in Different Sectors
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SDN Controller in Optical and Wide Area Network
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Performance Evaluation of SDN
Controller




Why Evaluating the Performance of a Controller

- To Maximize the Performance with Available Physical Resources
- To Evaluate Controller-Switch Communication Efficiency

- To Understand the Impact of Topology

- To Measure the Reliability of Trustability of Controller



Metrics to be Considered Evaluating Controllers

- Throughput

- Latency

- CPU and Memory Utilization
- Round Trip Time

- And Many More



Taxonomy of Evaluating a Controller
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Lists of Performance Testing Tool

- CBench

- PktBlaster

- OFNet

- Others: WCbench, OFCBenchmark, OFCProbe, HCProbe.
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What is CBench

- Cbench emulates a configurable number of OpenFlow switches
that all communicate with a single OpenFlow controller

- Each emulated switch sends a configurable number of new flow
messages to the Controllers

- Waits for the appropriate flow setup responses and records the
difference in time between request and response

- It supports two modes of operation: Latency and Throughput
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Key Features of PktBlaster

- Real world Network Emulation for SDN

- Flow-mod and Packet-out based Performance Benchmarking
- Supports both OpenFlow 1.0 and 1.3

- User-friendly GUI

- Comprehensive Test Results, Analysis and Comparison
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Key Features of OFNet

- Function as a Network Emulator, Debugging Framework and
Controller Testing Tool

- Tests can be done through Customized Topology
- Features In-built Traffic Generator

- Have Additional Metrics other than Latency and Throughput. For
Example: Flow Generations Rate, Flow Failure Rate, vSwitch CPU
utilization and Average RTT
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Architecture of Benchmarking Tool
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Benchmark Parameters

Tool Parameter Values
Number of Switch 2,4,8, 16
Number of Test Loops 20
CBench Test Duration 300 sec
MAC Addresses per Switch (Hosts) 64
Delay between Test Intervals 2 sec
Number of Switch 2,4, 8,16
Test Duration 300 sec
Number of Iterations 5
PktBlaster | Traffic Profile TCP
Ports per Switch (Hosts) 64
Flow Counts per Table 65536 (Default)
Packet Length 64 bytes
Number of Hosts 20
Number of Switchs 7
OFNet Desired Traffic Rate 100 flow/sec
Flow measured by Packet-out & Flow-Mod
Total Test Duration 300 sec
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Performance Comparison using CBench
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Performance Comparison using PktBlaster
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Performance Comparison using OFNet

10000 w00
O ioodlolt m ON0S e OptrUL e Wasse Vou mm odlont T ON0S = OperL e Hacsro =
P R — it R — i —]
0
1000
g
g f
H g
£ w0 H
10
!
m 120 100 200 300 10 o0 120 100 200 300
100 10000
\ou s rioodl g mm " Ovs B Opervl Em acsto T R ey gV =y —
T Seaton = e— e —
%0
1000
~ 100
Do
- 1
o1

120 180
Time (sec)

120
Time (sec)

28



SDN Controller in an ICN Scenario




Why We Need to Combine SDN and ICN

- Automated and Intelligent Content Delivery

- Content-based Mobility Support in 5G and Vehicular Network
- In-network Caching based on Content Popularity
- Content-based Traffic Engineering
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Types of SDN-ICN Architecture

- Centralized Architecture
- Distributed Architecture
- Clean-State Architecture
- Overlay and Underlay Architecture

30



SDN-ICN Architecture
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Controllers’ Role in SDN-ICN Architecture

- Topology Discovery and Statistics Collection
- Name-based Content Forwarding

- Content Discovery and Caching
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Intended Research Findings from SDN-ICN Implementatio

- Improve Caching Scheme
- Controller-to-Controller Communication through Contents

- Improved Content Security
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Tools We Intend to Use

- Testbed using ndnSIM
- Controller App
- ICN Node App
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Conclusion




Final Words-1

Google had big problems Regarding High financial cost Managing
their Data Centers

- Hardware and software upgrade

- Over provisioning (fault tolerant)

- Manage large backup traffic

- Time to manage individual switch

- A lot of men power to manage the infrastructure
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Final Words-2

What are the Problems They were having

- Delay caused by rebuilding connections after Link Failure
- Slow to rebuild the routing tables after Link Failure

- Difficult to Predict what the New Network may perform
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Final Words-3

How They Solve these Problems

- Built their hardware and wrote their own software for their
internal data centers

- Surprised the industries when Google announced SDN was
possible in production

How did they do it?

B4: Experience with a Globally-Deployed
Software Defined WAN

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Holzle, Stephen Stuart and Amin Vahdat
Google, Inc.
b4-sigcomm@google.com
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Questions?
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