TCP Variant Simulation
using NS3

Name: Karim Md Monjurul
ID: 3820160025
Supervisor: Prof. Zhu Lie Huang

What we have used

* VMWare Workstation Player 12.5
 Ubuntu 16.04 LTS x64

* NS3 version 3.26

* NetAnim 3.107/

* Gnuplot

Project Topology

11111111111111111111111111111111111

aaaaaaaaaaaaaaaaaaaaaaaaaa

SMbps, 2ms

..........................

aaaaaaaaaaaaaaaaaaaaaaaaaaa

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Fapepesssssannnnsssrsannnd

Source Code Demonstration Main Function and Nodes

Creation and defining TCP Congestion Algorithm Type

int main ()

{

std::string lat ="2ms";

std::skring rate = "SMbps"; //P2P link
std::string rate1="2Mbps"; //for Node 3 to 4
bool enableFlowMonitor = false

CommandLine cmd;

cmd.AddValue ("latency”, "P2P link Latency in miliseconds”, lat);
cmd.AddValue ("rate", "P2P data rate in bps", rate);

cmd.AddValue ("EnableMonitor”, "Enable Flow Monitor", enableFlowMonitor);

/J/emd.Parse (argc, argv),

FiCake Fho [F Finn confrol alaorithm
Jraels Lhe E— fault congestion control algorithm

Config: SetDeFault{ ns3:TcpL4Protocol::SocketType", StringValue("ns3: TcpNewReno"));

NS LOG_INFO I[”Create nodes. "}
NodeContainer ¢; //ALL Nodes
c.Create(8);

NodeContainer nOn3 = NodeContainer (c.Get (0), c.Get (3));
), c.Get (3));
NodeContainer n2n3 = NodeContainer (c.Get (2), c.Get (3));
), c.Get (4));
) (
) (
) (

NodeContainer n1n3 = NodeContainer (c.Get (1

NodeContainer n5n4 = NodeContainer (c.Get (5), c.Get (4));
NodeContainer nén4 = NodeContainer (c.Get (6), c.Get (4));
NodeContainer n7n4 = NodeContainer (c.Get (7), c.Get (4));

((
((
((
NodeContainer n3n4 = NodeContainer (c.Get (3
((
((
((

Source Code Demonstration Stack Creation and IP address Assign

/,.':_/i*rrw kkkkkkkkkkkkkxdkkk (D addresses Seltup *HHkkkkkikkddokokkdkdokodok

;.f kkkkkkkkkkkkkkkkdkkrkkkk [netall [nkernet Sktack*****xkkkkkkkhkkki NS_LOG_INFO ("Assign IP Addresses.");
Ipv4AddressHelper ipv4;
InternetStackHelper internet; ipv4.SetBase ("10.1.1.0", "255.255.255.0");
internet.Install (c); Ipv4interfaceContainer i0i3 = ipv4.Assign (d0d3);
JfFERFRRRRRkkkkR ke k% channels Creation without IP addressing***¥ %% ipv4.SetBase ("10.1.2.0", "255.255.255.0");

Ipv4interfaceContainerili3 = ipv4.Assign (d1d3);
NS LOG INFO ("Create channels.");

PointToPointHelper p2p,p2p_for3_4; ipv4.SetBase ("10.1.3.0", "255.255.255.0");
p2p.SetDeviceAttribute ("DataRate", StringValue (rate)); Ipv4interfaceContainer i2i3 = ipv4.Assign (d2d3);
p2p.SetChannelAttribute ("Delay", StringValue (lat));

NetDeviceContainer d0d3 = p2p.Install (nOn3); ipv4.SetBase ("10.1.4.0", "255.255.255.0");
NetDeviceContainer d1d3 = p2p.Install (n1n3); Ipv4interfaceContainer i3i4 = ipv4.Assign (d3d4);
NetDeviceContainer d2d3 = p2p.Install (n2n3);

NetDeviceContainer d5d4 = p2p.Install (n5n4); ipv4.SetBase ("10.1.5.0", "255.255.255.0");
NetDeviceContainer d6d4 = p2p.Install (nén4); Ipv4interfaceContainer i5i4 = ipv4.Assign (d5d4);

NetDeviceContainer d7d4 = p2p.Install (n7n4);
ipv4.SetBase ("10.1.6.0", "255.255.255.0");

p2p_for3_4.SetDeviceAttribute ("DataRate", StringValue (rate1));, IpvdinterfaceContainer i6i4 = ipv4.Assign (d6d4);
p2p_for3 4.SetChannelAttribute ("Delay", StringValue (lat));
NetDeviceContainer d3d4 = p2p_for3_4.Install (n3n4); ipv4.SetBase ("10.1.7.0", "255.255.255.0");

Ipv4interfaceContaineri7i4 = ipv4.Assign (d7d4);

Source Code Demonstration TCP Node NO to N5

JFxFESISF A% TOP connection from NO £ NG **¥ k¥ skkiskikskkkitiokik ik ki klokkk
uint16_t sinkPort1 = 8080;
Address sinkAddress1 (InetSocketAddress (i5i4.GetAddress (0), sinkPort1)); //interface of n5
PacketSinkHelper packetSinkHelper1 ("ns3:TcpSocketFactory”, InetSocketAddress (Ipv4Address::GetAny (), sinkPort1));
ApplicationContainer sinkApps1 = packetSinkHelper1.Install (c.Get (5)); //n5 as sink
sinkApps1.Start (Seconds (2.));
// sinkApps.Stop (Seconds (25.));

Ptre<Socket> ns3TcpSocket1 = Socket::CreateSocket (c.Get (0), TcpSocketFactory::GetTypeld ()); //source at n0

//********************* Congesﬁon Wfﬂdﬂ W**********************
ns3TcpSocket1->TraceConnectWithoutContext ("CongestionwWindow", MakeCallback (&CwndChange));

[/ ERER R RFRIERFHFTOP applicALion bt NO****¥xxkskikickiokkirkik ik kkink
PtreMyApp> app1 = CreateObject<MyApp> ();
app1->Setup (ns3TcpSocket1, sinkAddress1, 1040, 100000, DataRate ("1Mbps"));
c.Get (0)->AddApplication (app1);
app1->SetStartTime (Seconds (2.));
// app->SetStopTime (Seconds (25.));

Source Code Demonstration TCP Node N1 to N6

//**************** TCP connection fmm N1 Lo NE*F*F*FxFkkdkdkkikkikkkkkhk

uint16_t sinkPort2 = 8081;

Address sinkAddress?2 (InetSocketAddress (i6i4.GetAddress (0), sinkPort2)); //interface of n6

PacketSinkHelper packetSinkHelper2 ("ns3:TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), sinkPort2));
ApplicationContainer sinkApps2 = packetSinkHelper2.Install (c.Get (6)); //n6 as sink

sinkApps2.Start (Seconds (5.));

Ptr<Socket> ns3TcpSocket2 = Socket::CreateSocket (c.Get (1), TcpSocketFactory::GetTypeld ()); //source at n1

J/FFFxEERRRERRRR Congestion window for N1 to N6
ns3TcpSocket2->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (& CwndChange));

// Create TCP application at N1
PtreMyApp> app2 = CreateObject<MyApp> ();
app2->Setup (ns3TcpSocket?, sinkAddress2, 1040, 100000, DataRate ("1Mbps"));
c.Get (1)->AddApplication (app2);
app2->SetStartTime (Seconds (5.));
// app2->SetStopTime (Seconds (25.));

Source Code Demonstration UDP Node N2 to N7

// kkkkkkkkkkkkkkkkkkx%% [|]DP connection fmm N2 bo N7 ****kkkkkkkkkkhhhhkhhkhhkkkkk

uint16_t sinkPort3 = 6;

Address sinkAddress3 (InetSocketAddress (i7i4.GetAddress (0), sinkPort3)); //interface of n7

PacketSinkHelper packetSinkHelper3 ("ns3::UdpSocketFactory”, InetSocketAddress (Ipv4Address::GetAny (), sinkPort3));
ApplicationContainer sinkApps3 = packetSinkHelper3.Install (c.Get (7)); //n7 as sink

sinkApps3.Start (Seconds (10.));

sinkApps3.Stop (Seconds (17.));

Ptr<Socket> ns3UdpSocket = Socket::CreateSocket (c.Get (2), UdpSocketFactory::GetTypeld ()); //source at n2

// Create UDP application at N2

Ptr<MyApp> app3 = CreateObject<MyApp> ();

app3->Setup (ns3UdpSocket, sinkAddress3, 1040, 100000, DataRate ("1Mbps"));
c.Get (2)->AddApplication (app3);

app3->SetStartTime (Seconds (10.));

app3->SetStopTime (Seconds (17.));

Source Code Demonstration Final Part

Animationinterface anim("Assignment.xml");
anim.SetConstantPosition(c.Get(0),0.0,0.0);

// Flow Monitor anim.SetConstantPosition(c.Get(1),0.0,2.0);
Ptr<FlowMonitor> flowmon; anim.SetConstantPosition(c.Gek(2),0.0,4.0);
if (enableFlowMonitor) anim.SetConstantPosition(c.Gekt(3),2.0,2.0);
{ anim.SetConstantPosition(c.Get(4),4.0,2.0);
FlowMonitorHelper flowmonHelper; anim.SetConstantPosition(c.Get(5),6.0,0.0);
Flowmon = flowmonHelper.InstallAll (); anim.SetConstantPosition(c.Gekt(6),6.0,2.0);
} anim.SetConstantPosition(c.Get(7),6.0,4.0);
4 Simulator::Run ();
// Now, do the actual simulation. if (enableFlowMonitor)
/ {

NS_LOG_INFO ("Run Simulation.");
Simulator::Stop (Seconds(25.0));

flowmon->CheckForLostPackets ();
Flowmon=>SerializeToXmlFile("Assignment.flowmon", true, true);
}

Simulator::Destroy ();

NS _LOG_INFO ("Done.");

}

//Enabling Pcap Tracing
//p2p.EnablePcapAll("scratch/Assignment”);

NetAnim Demonstration NO-N5 TCP

Lot EEHHHEHHE i_unes 5 .| MNodeSize | 1 = IP MAC T

. o .
3 4

NetAnim Demonstration N1-N6 TCP

Nodesize 1 =| [P MAC T

NetAnim Demonstration N2-N7 UDP

EE— =

TCP New Reno

TCP New Reno Congestion Window Value vs Time

1.600000 ——— ——— — .

—+— TCP New Reno

1.400000

1.200000

1.000000

800.000000 -

600.000000 -

Congestion Window Values CWM

400.000000

200.000000 -

0.000000 '
00:00 00:05 00:10 00:15 00:20 00:25

TIME

TCP Vegas

TCP Vegas Congestion Window Value vs Time
16.000000

! ! —+— TCP Vegas

14.000000 -

12.000000

10.000000 -

8.000000

6.000000 —

Congestion Window Values CWM

I

I

1

1

1

|

I

|

I

!
|
|
|
|
'%
t
|
i

4.000000

Wéfﬁ@fﬁéﬁﬁﬁ@fé@%f{ B |

2.000000 }f

0.000000 | | | | | | | | | |
00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20 00:22 00:24 00:26

TIME

TCP YeAH

TCP Yeah Congestion Window Value vs Time
350.000000

! —+— TCP Yeah

300.000000 —

250.000000 —

200.000000 —

150.000000

Congestion Window Values CWM

100.000000

50.000000

0.000000 | | | | | | | | | |
00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20 00:22 00:24 00:26

TIME

TCP New Reno vs TCP Vegas

TCP New Reno vs TCP Vegas

1 .600000 T
I —+— TCP New Reno

—— Flavor1 TCP Vegas

1.400000

1.200000

1.000000

800.000000 [~

600.000000

Congestion Window Values CWM

400.000000

200.000000

0.000000 :
00:00 00:05 00:10 00:15 00:20 00:25

TIME

TCP New Reno vs TCP Vegas

* NewReno tends to be very steep sloping downwards from left to right having
more throughput time than TCP YeAH.

e At congestion window (cwnd) value 1.000000, there is a symptom of slight
congestion avoidance at time 17 sec, than again it regained its cwnd value
consistently.

* cwnd value of TCP Vegas tends to remain close to O(zero) from time 05~17
sec, then there is a scenario of data being dropped for about 2 sec.

* This also depicts that there might be a tendency of more packets loss with
more packets retransmission and the nodes to be remained busy with fast
recovery of data losses.

* TCP Vegas proved to show very poor performance against congestion
avoidance.

TCP New Reno vs TCP YeAH

TCP New Reno vs TCP Yeah

1.600000 — — T T T T —— TCP New Reno

—— Flavor2 TCP Yeah

1.400000

1.200000

1.000000 -

800.000000 -

600.000000

Congestion Window Values CWM

400.000000

200.000000 -

0.000000 :
00:00 00:05 00:10 00:15 00:20 00:25

TIME

TCP New Reno vs TCP YeAH

* TCP NewReno tends to be very steep sloping downwards from right to left
having more throughput time than TCP Yeah.

* At cwnd value 1.000000, there is a symptom of slight congestion avoidance at
time 17 sec, then again it regained its cwnd value consistently.

e cwnd value of TCP Yeah tends to gain value consistently up to 350.000000
from time 05~10 sec, then it fell drastically to less than 100.000000 at timel10
sec.

* The graph tried to regain again but it seemed to stay in the same level
depicting that there is more congestion taking longer throughput time and
outstanding packets yet to be transferred.

* This also depicts that there might be a tendency of more packets loss with
more packets retransmission and the nodes to be remained busy with fast
recovery of data losses.

TCP New Reno vs TCP Vegas vs TCP YeAH

Congestion Window Value vs Time

1 .600000 T
' —+— TCP New Reno

TCP Vegas

—+— TCP Yeah
1.400000

1.200000

1.000000

800.000000 |~

600.000000

Congestion Window Values CWM

400.000000

200.000000

0.000000 :
00:00 00:05 00:10 00:15 00:20 00:25

TIME

TCP New Reno vs TCP Vegas vs TCP YeAH

 TCP NewReno tends to be very steep sloping downwards from right to left having
more throughput time than TCP Yeah.

e At cwnd value 1.000000, there is a symptom of slight congestion avoidance at time
17 sec, than again it regained its cwnd value consistently.

e cwnd value of TCP Vegas tends to remain close to 0(zero) from time 05~17 sec, then
there is a scenario of data being dropped for about 2 sec. TCP Vegas proved to show
very poor performance against congestion avoidance.

e cwnd value of TCP Yeah tends to gain value consistently up to 350.000000 from time
05~10 sec, then it fell drastically to less than 100.000000 at time10 sec.

* The graph tried to regain again but it seemed to stay in the same level depicting that

there is more congestion taking longer throughput time and outstanding packets yet
to be transferred.

* There might be a tendency of more packets loss with more packets retransmission
and the nodes to be remained busy with fast recovery of data losses.

We Found out that

* TCP Vegas does lead to a fair allocation of bandwidth for different delay connections.
* Only TCP YeAH is behaving against long delay connections

 TCP NewReno make some performance improvements to TCP Vegas and YeAH. TCP NewReno
achieves higher throughput than Vegas and YeAH for large loss rate.

* TCP Vegas may prove to be better when more than one packet is dropped in one window.TCP
Vegas causes much fewer packets retransmissions than TCP NewReno and YeAH.

 TCP NewReno tends to gain its cwnd value aggressively while TCP YeAH tends to be stable
and relatively close to O (zero).

 when the buffer sizes are small, TCP Vegas performs better than TCP Reno and YeAH, since it
does not require much space in switch buffer. As the buffer sizes increase, TCP NewReno and
TCP YeAH throughput increase at the cost of a decrease in TCP Vegas throughput.

* Itis suggested that a change in Vegas algorithm to make Vegas more aggressive in the
competition.

* This may be worthy of further investigation in the future work. However, all the efforts in
analysis of queuing algorithms effects lie in the gateway size.

* To conclude,we found TCP NewReno performin% the best but the debate for which is better
in which aspect is still and open discussion to talk about.

Surprising Factor TCP Tahoe worked on NS 3.24

TCP Tahoe Congestion Window Value vs Time

300.000000 T | —+— TCP Tahoe

250.000000

200.000000

150.000000

Congestion Window Values CWM

100.000000 —

50.000000

0.000000 | | | | | L | | | |
00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20 00:22 00:24 00:26

TIME

Surprising Factor

1 .600000 T T T T I T T T T T T T T T

—— TCP New Reno
TCP Vegas
—+— TCP Tahoe

1.400000

1.200000

1.000000

800.000000

600.000000

Congestion Window Values CWM

400.000000

200.000000

0.000000 ' : . :
00:00 00:05 00:10 00:15 00:20 00:25

TIME

THANK YOU

