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Abstract—Federated learning (FL) enables multiple learning
devices to exchange their training results and collaboratively de-
velop a shared learning model without revealing their local data,
thereby preserving data privacy. However, contemporary FL
models have many drawbacks including limited security against
malicious learning devices generating arbitrarily erroneous train-
ing results. Recently, a promising concept - coded distributed
computing (CDC) has been proposed for maintaining security of
various distributed systems by adding computational redundancy
to the datasets exchanged in these systems. Although the CDC
concept has already been adopted in several applications, it is
yet to be applied to FL systems. Accordingly, in this paper, we
develop the first integrated FL-CDC model that represents a
low-complexity approach for enhancing security of FL systems.
We implement the model for predicting the traffic slowness in
vehicular applications and verify that the model can effectively
secure the system even if the number of malicious devices is large.

Index Terms—Coded Distributed Computing, Federated
Learning, Lagrange Polynomial, Vehicular Applications

I. INTRODUCTION

FL is the privacy-preserving machine learning technique
that enables multiple learning devices to collaboratively de-
velop a shared learning model without revealing their private
data [1], [2]. In particular, in FL, any learning device can
estimate the model updates based on the locally-collected and
trained data according to the current global model. The model
is then consolidated and backed up by a central server in
order to allow all learning devices to access the same global
model while calculating their latest local updates. Such a
process is replicated until the global learning model achieves
the targeted accuracy. In this way, the data privacy is preserved
because the local training data is not exchanged and, hence,
not intercepted on the way from the learning device to the
server, as it frequently happens in the conventional distributed
learning approaches [1], [2].

Unfortunately, the contemporary FL models suffer from
the limited security against untrustable learning generating
arbitrarily erroneous training results, which can affect the
entire computing process and, thus, accuracy of the global
learning model [1]–[4]. Several solutions (e.g., [4]–[6]) have
been proposed to solve this problem. One possible solution,
e.g. [5], is to identify all untrustable devices that produce
inaccurate training results, and perform computation only on
trustworthy devices. However, this solution can be rather
compute intensive and, hence, unsuitable for realistic FL

systems comprising numerous learning devices, as they re-
quire periodical verification of the training results of each
learning device [6]. Other solutions are based on blockchains,
e.g., [7], the blocks containing training results are verified by
the blockchain miners to ensure security of the FL system.
Nevertheless, due to block verification process, such solutions
may significantly increase the delay and energy overheads, as
well as computing costs, which makes them impractical for
many time sensitive machine learning tasks, e.g., as in mobile
and Internet of Things (IoT) applications. A promising concept
called CDC has been proposed recently to enhance security
of multi-party computations in distributed systems [6]–[9].
One of the low-complexity CDC techniques, Lagrange coded
computing (LCC), utilizes the Lagrange polynomial to perform
decoding of the polynomial function estimations [10]–[12].

Existing CDC techniques are designated to deal with strag-
glers (nodes that perform slower than others). However, a
few of them tackles with security against malicious nodes.
Therefore, compared to other CDC techniques, we use LCC
because it provides privacy preservation against malicious
nodes, flexibility against straggling nodes, and information-
theoretic privacy among colluding nodes [13]. Besides, LCC
requires low storage and computation cost, which makes it
convenient to implement. As a result, LCC allows the server,
i.e., fusion center, to successfully decode the final outcome of
distributed computations even when some function estimations
by the untrustable parties, e.g., malicious learning devices,
are erroneous. Various CDC techniques have been adopted
in certain distributed systems, e.g., cloud and edge computing
networks. Nevertheless, they have not been implemented in FL
models due to the following challenges. First, the architecture
of the FL-CDC model based on LCC is not straightforward. In
particular, the original LCC model is designed for multi-party
computations where the dataset trained by learning devices is
produced at the centralized server, i.e., fusion center, whereas
in FL model, each device collects its own datasets and uses
it to train the model. Second, the original LCC model is
designated to operate on polynomial functions, while most
common FL models are based on the Neural Networks (NNs)
[1], [2], [10]. As such, to apply LCC, the NN function used
in FL must be first approximated with a polynomial function.

Accordingly, this paper aims to address the aforementioned
challenges in order to apply the concept of LCC to the FL
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model. The main contributions of the paper are as follows:
• We develop a novel architecture of the integrated FL-

CDC model based on LCC. The main challenge of
developing the architecture is that the original LCC
model is designed to operate in the settings of multi-
party computations [10] that are rather different from
the FL settings. Hence, to fit the scenario of FL, the
proposed FL-CDC architecture specifies the details of
data collection and parameter generation by learning
devices.

• To adopt LCC in the common FL models, we derive the
polynomial approximation of the NN function used in
the system. The proposed approximation method is based
on the least square approximation [14] where the degree
of the polynomial approximation functions is decided to
meet the demand of FL-CDC model based on the trade-
off between the estimation accuracy and time complexity.

• We present a novel implementation of the FL-CDC model
for vehicular applications. The application predicts the
slowness of the road traffic based on certain features
collected by vehicles. The performance of the FL-CDC
model is evaluated based on the extensive simulations
conducted under different settings.

The rest of the paper is as follows. In Section II, we review
related works. In Section III, we present the system model.
In Section IV, we derive the polynomial approximation and
develop the proposed integrated FL-CDC model. In Section
V, we propose the implementation of the FL-CDC model for
vehicular applications and evaluate its performance.

II. RELATED WORK

Existing works in the area of FL can be arbitrarily divided
into three categories: (1) FL models (e.g., [11], [12], [15]) to
improve the learning efficiency measured in terms of estima-
tion accuracy and/or convergence time. These works include
the models designed for supervised and unsupervised learning
based on the assumption that all learning devices are trustwor-
thy. (2) FL applications (e.g., [16], [17]) in practical networks,
such as mobile and multi-access edge computing networks
with the focus on improving the communication efficiency
and incentivizing, e.g., using some monetary rewards, the
learning devices to complete their learning tasks considering
that all learning devices are trustworthy. (3) FL techniques
that presume the existence of untrustable, e.g., malicious and
malfunctioning, learning devices (e.g., [4], [18]). To deal with
such devices, two possible solutions are proposed. The first
solution [19], [20] is based on the coding method in which
the final results of FL computed at the server can be decoded
correctly even if some training results returned by untrustable
learning devices are erroneous. The main disadvantage of this
method is that it is designed for a very simple FL model
based on linear regression, which is rarely used in the state-of-
the-art FL algorithms due to low convergence rate and high
estimation errors for many learning tasks. Another solution
(e.g., [21]–[23]) is based on blockchains where the computing
results returned by malicious devices are verified by the set of

validators. This solution, however, can increase the delay and
computational costs since each validator must apply a verifi-
cation to each training result generated by learning devices.
Consequently, the blockchain-based FL is inapplicable for
many delay-sensitive and compute-intensive IoT applications.

III. SYSTEM MODEL

A. System Model

We consider a FL system (shown in Fig. 1a) that includes
a fusion center, i.e., central server, and N learning devices
in the set N = {1, ..., N}, each of which produces its
local dataset Xn. The dataset Xn can be represented by the
data generated by mobile or IoT applications running on the
learning device. Each learning device sends their dataset to
nearby local wireless node that collects these datasets and
converts them into local models. At tth update of the FL
model, each learning device n needs to find the new model
parameters, i.e., weights, w(t)

n based on the previous model
parameters and the gradient of the current local loss function,
as [24]

w(t)
n = w(t−1) + αt∇C(t),∀n ∈ N, (1)

where αt is the learning rate; Cn is the loss function of the
local FL model of the learning device n. After this, the training
results of learning devices are aggregated at the fusion center
as [3]:

w(t) =
1

N

∑
n∈N

w(t)
n . (2)

Hence, the loss of the global FL model is given by:

∇C(t) =
1

N

∑
n∈N

C(t)
n . (3)

As such, at each iteration of the FL, each learning device
n updates the weights w(t)

n of the local model to minimize
its model loss Cn to achieve a certain predefined accuracy
θn (0<θn<1). The FL model converges when the global
model achieves some predifined global accuracy ε (0<ε<1).
The number of iterations needed for the global FL model to
converge is bounded by [24]:

J(ε, θ) =
O(log(1/ε))

1− θ
=

O(log(1/ε))

1− (
∑
n∈N θn)/N

, (4)

where θ = (
∑
n∈N θn)/N is the average local accuracy of

learning devices, and the number of iterations needed for the
local FL model of the learning device n ∈ N to converge is
bounded by [24]:

O(log(1/θn)),∀n ∈ N, (5)

From (4), both the local accuracy θ and global accuracy
ε of the FL model have a notable impact on its conver-
gence time J(θ, ε). In particular, since ∂J(θ, ε)/∂ε ≤ 0 and
∂J(θ, ε)/∂θ ≥ 0, the convergence time J(θ, ε) decreases with
ε and increases with θ. For example, if θ =

∑
n∈N θn → 1,

i.e., the average local training result of learning devices is
inaccurate (e.g., erroneous), we have J(θ, ε) → ∞, i.e., the
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(a) Generic FL model. (b) Proposed FL-CDC model.

Fig. 1. Comparison of the generic FL and proposed FL-CDC model.

convergence time of the FL model tends to infinity, so that the
model will not converge to a fixed-point solution. As such, the
performance, i.e., convergence time J(θ, ε), of the FL model
can degrade significantly due to erroneous training results
produced by untrustable (or malicious) learning devices. As
explained in Section I, although several solutions, e.g., [4]–
[6], have been proposed to address this issue, most of them
are rather compute-intensive and can significantly increase the
delay and energy costs. Hence, in this paper, we consider
an alternative LCC-based approach [10], [12] to deal with
untrustable learning devices in the FL system. We begin by
presenting the basic idea behind the concept of LCC.

B. Concept of Lagrange Coded Computing

The concept of CDC [6]–[9] has been proposed to solve the
main issues of multi-party computations, e.g., untrustable com-
puting devices producing erroneous results. LCC is the suitable
solution among current CDC schemes, as it allows a relatively
simple implementation for many computing tasks [10], [25],
[26]. LCC is utilized to perform the evaluation of a polynomial
function f of some degree deg(f) over the dataset X =
{Xi}Ki=1 partitioned into K batches in an effective parallel
manner by the set N of N devices, each of which can be
untrustable, e.g., malicious, with the goal to compute the final
output Y = {yi = f(Xi)}Ki=1. The central idea behind LCC is
to utilize the Lagrange polynomial to encode the input dataset
in order to establish the statistical redundancy in a novel
coded manner across the devices perfoming computations.
This ensures that the final output can be decoded even if
some computing results returned by untrustable devices are
erroneous [10]. In short, the details of the LCC operation are
as follows.

The distributed computing system considered in LCC in-
cludes the ”master”, e.g., fusion center, that offloads com-
putations to N ”workers”, e.g., learning devices. The set X
submitted to workers comprises K intputs, {Xi}Ki=1, and the
computing task of each worker is defined by a polynomial
function f . In order to encode its data inputs, the master selects
K distinct elements, e.g., {βi}Ki=1, and constructs the Lagrange

interpolation polynomial u of degree deg(u) ≤ K−1, defined
as [10]

u(z) =
∑

j∈{1,...,K}

Xj

∏
i∈{1,...,K}\j

z − βi
βj − βi

, (6)

so that
u(βi) = Xi,∀i ∈ {1, . . . ,K} (7)

holds. After this, the master selects N distinct elements
{αi}Ni=1, such that {αn}Nn=1∩{βi}Ki=1 = ∅, and then, encodes
the data input X̃i sent to worker i as [10]

X̃n = u(αn), n ∈ N. (8)

Upon receiving its encoded input X̃n, the worker computes
Ỹn = f(X̃n) and returns the obtained encoded computing
result Ỹn back to the master. Accordingly, the master will
receive the encoded set {Ỹn}Nn=1 which contains N results,
up to A of which can be erroneous [10].

Accordingly, to evaluate the final output Y , the master
must interpolate the obtained polynomial f(u). Typically,
interpolation of the polynomial f(u) of degree deg(f(u)) =
deg(u)deg(f) ≤ (K − 1)deg(f) requires (K − 1)deg(f) + 1
evaluations at distinct points. However, since 2 additional
evaluations are required for each erroneous result, the master
needs a Reed-Solomon decoder with 2A additional evaluations
to deal with up to A possibly malicious workers. As a result,
the system is A-secure if the final output can be decoded
successfully in the presence of up to A possibly malicious
workers as long as [10]

(K − 1)deg(f) + 2A+ 1 ≤ N. (9)

After obtain all coefficients of f(u) through Reed-Solomon
decoding, the master evaluates its final decoded output accord-
ing to Y = {Yi}Ki=1 = {f (Xi)}Ki=1 = {f (u (βi))}Ki=1.

IV. INTEGRATED FL-CDC MODEL

A. Polynomial Approximation of NN Functions

Note that since LCC relies on Reed-Solomon decoding, it
can only be performed on polynomial functions [10]. However,
computations defined in a neural network includes activation
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function in neurons and other non-linear functions [27]. Hence,
LCC cannot be directly applied to the NNs. In this case, the
nonlinear NN functions must be replaced by their polynomial
approximations. In paticular, the Weierstrass approximation
theorem [28] below provides the necessary theoretical foun-
dation for the feasibility of the approximation.

Theorem 1 (Weierstrass approximation). Suppose g is a
continuous real-valued function defined on the real interval
[a, b]. For every η>0, there exists a polynomial f such that
for all x in [a, b], we have |g(x)− f(x)|<η.

The above theorem states that any continuous function g
defined on the closed interval [a, b] can be approximated as
tightly as needed by the polynomial function f . However,
Weierstrass approximation theorem does not offer a specific al-
gorithm to generate such an approximation. Possible methods
to construct the polynomial approximation of the NN functions
are through the Taylor series [27] or Chebyshev polynomial
[29]. In particular, in this paper, least square approximation is
selected because different from other approximation methods,
least square approximation is able to achieve small approx-
imation error in a specific input range when the degree of
polynomial has already been determined [14]. Least square
approximation constructs a group of polynomial coefficients to
fit the approximating polynomial function of a given degree.
The parameter generation function in the least square approxi-
mation enables restricting the input data of the approximating
polynomial in a specific range. The time complexity of least
square approximation is max(O((deg(f))3), O(n(deg(f))2)
where n is the number of sample points used in the least
square approximation [14]. However, typically, the number
of sample points is larger than the expected degree of the
polynomial, so that O((deg(f))3) ≤ O(n(deg(f))2 and,
hence, the estimated time complexity of the least square
approximation is O(n(deg(f))2).

B. Proposed Integrated FL-CDC Model

Fig. 1b illustrates the proposed model of the integrated FL-
CDC system based on LCC. In the model, during the learning
process, devices receive encoding parameters predefined by the
fusion center and encode the data that they collect according
to the parameters assigned to them. The devices apply the
function given by the fusion center on the encoded data and
send the produced results back to the fusion center. The fusion
center updates the machine learning model and sends back the
model updates to learning devices.

In general, private local datasets of learning devices are
encoded before computation and the NNs used in the FL-
CDC model are approximated by polynomials. The fusion
center mainly has two functions: i) generating parameters for
learning devices and ii) decoding computation results sent
back from the devices. At the beginning, the fusion center
predefines the parameters {βi}Ki=1 and {αi}Ni=1. Note that, in
LCC, each device gets a polynomial function u by applying
Lagrange interpolation on {βi}Ki=1 given by the fusion center

and data {Xi}Ki=1 collected by itself. Also, note that unlike
the original LCC [10] designed for polynomial computations,
when combining LCC with the non-polynomial learning tasks,
The approximation of the NN function can only be applied on
a specific domain. An element in a worker’s encoded data
vector can be written as (6).

In our framework, the encoded data must be considered
when definining the polynomial approximation of the NN
function. For instance, Taylor expansion of logistic function
only convergences in field [−1, 1], and increasing the order
of derivative in the approximation does not necessarily reduce
the error if the value of input may be very large. The most
popular normalizing method is to normalize data into [0, 1] or
[−1, 1], the ideal solution is to make encoded data falls into
the same filed of original normalized data. An element in a
worker’s encoded data vector can be further written as

u(α) = (c1, ..., cK)(Xi, ..., XK)T , (10)

where cj =
∏
i∈[K]\j

α−βi

βj−βi
.

In the case that data are normalized into [0, 1], as

∀Xi, ..., Xk, (c1, ..., cK)(Xi, ..., XK)T ∈ [0, 1]

⇐⇒ c1, ..., ck ≥ 0 and c1 + ...+ ck ≤ 1.
(11)

In the case that data are normalized into [−1, 1], as

∀Xi, ..., Xk, (c1, ..., cK)(Xi, ..., XK)T ∈ [−1, 1]
⇐⇒ |c1|+ ...+ |ck| ≤ 1.

(12)

The sum of elements in vector (c1, ..., cK) given by La-
grange interpolation is always 1, and negative elements always
exist if the length of the vector is larger than 1. Therefore,
the range of encoded data is always larger than the range
of original data. However, the sum of the absolute value
of elements can be restricted in any value larger than 1,
which means in the case that data are normalized into [−1, 1],
the absolute value of encoded data can be restricted in any
positive value larger than 1. Once the range of encoded data
is determined, the upper bound of approximation error can be
determined. For example, for C > 1, the range of encoded
data is expected to be [−C,C], since

∀Xi, ..., Xk, (c1, ..., cK)(Xi, ..., XK)T ∈ [−C,C]
⇐⇒ |c1|+ ...+ |ck| ≤ C.

(13)

By solving the absolute value inequality, the fusion center
generates LCC parameters that is able to restrict encoded data
in the expected range whatever the original data is. After
the parameters are generated, the fusion center sends them
to learning devices that are currently engaged in the learning
and waits for their computation results. The fusion center
decodes the outcome using the Reed-Solomon decoding. In
proposition-1, we estimate the time complexity of the proposed
FL-CDC model.

Proposition 1. The time complexity of the FL-CDC model is
O(N

(
K2 + n(deg(f))2

)
+K +N3), where n is the number
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of sample points used in the least square approximation.

Proof: The execution of the FL-CDC model can be divided
into four parts: parameter generation, encoding, approxima-
tion, and decoding. The encoding in the FL-CDC model
represents interpolation of a polynomial at K points with the
time complexity of O(K2). As mentioned in Subsection IV-
B, the time complexity of the approximation of function f
is O(n(deg(f))2). Therefore, the total time complexity of
executing encoding and approximation in the FL-CDC model
for N devices is O(N

(
K2 + n(deg(f))2

)
). During param-

eter generation, the center generates {βi}Ki=1 and {αi}Ni=1,
which has the time complexity of O(K + N). Further-
more, the time complexity of the Reed-Solomon decoder is
O((R + 2A)3) where R is the recover threshold. Since in
our case, R + 2A is at most N , the total time complexity of
executing parameter generation and decoding in the FL-CDC
model at the center is O(K + N + N3) = O(K + N3). As
a result, the total time complexity of the FL-CDC model is
O(N

(
K2 + n(deg(f))2

)
+K +N3). �

V. IMPLEMENTATION FOR VEHICULAR APPLICATIONS

We now describe the implementation of the proposed FL-
CDC model based on LCC for vehicular applications aimed
to predict the behavior of the urban traffic. The simulation
model of the system has been developed in MATLAB. The
data used in the application are collected from environments
by vehicles in urban area [30]. Totally there are 16 fea-
tures used to describe the traffic, including immobilized bus,
broken truck, vehicle excess, accident victim, running over,
fire vehicles, occurrence involving freight, incident involving
dangerous freight, lack of electricity, fire, point of flooding,
manifestations, defect in the network of trolleybuses, tree
on the road, semaphore off and intermittent semaphore. The
goal of the application is to predict the slowness in traffic in
percentage based on the features collected by vehicles.

The model used in the paper is a single layer NN. Each
vehicle participated in the learning owns a local data vector
of length K. The model parameter is a weight vector of length
K. Due to that data are normalized into [−1, 1], the function
used to do prediction is

f(X) =
1− e−wXT

1 + e−wXT . (14)

where w is the model parameter and X is the local data. The
fusion center collects the computation results of f from users
participating in current learning process.

Cross entropy is used as loss function, given by

C = −(y lnσ + (1− y) ln (1− σ)), (15)

where σ = 1+f ′(X)
2 and y is the real value of prediction. In

order to apply LCC in FL-CDC model, f is replaced with
its least square approximation f ′ Besides, in the FL-CDC
model, each user encodes its local data vector according to
the encoding parameters assigned by the fusion center.
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Fig. 3. Relative error without malicious devices for N from 1 to 10.

In Fig. 2, we implement the vehicular application by using
plain FL model, approximated FL model and FL-CDC model.
Fig. 2 illustrates the return value of the last iteration of the
models with the number of workers varying from 1 to 10. In
approximated FL mode, the least square approximation is done
by using 21 sample points uniformly distributed on [−2, 2]. We
do not introduce malicious devices in the implementation. Due
to that the computation results of devices are highly consistent,
there is no decode failure in FL-CDC model. Therefore,
the two lines representing return values of approximated FL
model and FL-CDC model are overlapping in Fig. 2. Fig. 3
illustrates the relative error of the return value between two
approximated FL models and plain FL model. The relative
error of approximated FL model and FL-CDC model are
represented by one line since they are identical. As shown
in Fig. 3, the maximum value of relative error is less than
0.045 during simulation.

Fig. 4 and Fig. 5 show the time dynamics of the return
predicted value for N=10 devices with no malicious devices
(Fig. 4) and with 3 malicious devices (Fig. 5). From Fig. 4,
if there are no malicious devices, the value predicted in the
FL-CDC model is almost the same as the value predicted in
the plain FL model. On the other hand, from Fig. 5, with
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Fig. 6. Relative error with 5 malicious devices for N=10.

3 malicious devices, the proposed FL-CDC model produces
a more accurate prediction than the plain FL model. Next, in
Fig. 6 we implement the FL-CDC model by fixing the number
of devices as 10 with the number of malicious devices varying
from 10% to 50%. Fig. 6 illustrates return values of the last
iteration from plain FL model, approximated FL model and
FL-CDC model. As shown in Fig. 6, relative error of plain

Fig. 7. Relative approximation error with the degree 3

Fig. 8. Relative approximation error with the degree 5
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Fig. 9. Avg. absolute error depending on the number of malicious devices.

FL model and approximated FL model can reach 0.35 during
simulations, while decode failure does not happen in FL-CDC
model until the number of malicious devices reaches 40%. It
shows that FL-CDC model can decode data successfully when
the number of malicious workers does not exceed the recover
threshold.

Figs 7 and 8 show the time dynamics of the relative
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approximation error with the degrees 3 and 5, respectively.
From these figures, the approximation loss reduces with time
for both degrees. Furthermore, the highest value of the relative
error reached at the beginning of simulations is rather small,
i.e., comparable to 0.01. Fig. 9 shows the average absolute
average error depending on the number of malicious devices
for the total number of devices N=10. From this figure, the
proposed FL-CDC model can secure the system against upto 3
(or 30%) malicious devices. Moreover, even when the number
of malicious devices is higher than 3, our FL-CDC model still
achieves better accuracy than the plain FL and approximated
FL models.

VI. CONCLUSION

We have proposed the first integrated FL-CDC model based
on LCC to secure the FL process. The model utilizes the
least square approximation to approximate the NN computed
during FL. The model has been implemented for vehicular
applications. Simulation results show that the proposed model
achieves a good approximation accuracy and is able to secure
the system against malicious edge devices.
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