
133

SDN Controllers: A Comprehensive Analysis and

Performance Evaluation Study

LIEHUANG ZHU, MD M. KARIM, KASHIF SHARIF, CHANG XU, and FAN LI,

Beijing Institute of Technology

XIAOJIANG DU, Temple University

MOHSEN GUIZANI, Qatar University

Software-defined networks offer flexible and intelligent network operations by splitting a traditional network
into a centralized control plane and a programmable data plane. The controller in the control plane is the fun-
damental element used to manage all operations of the data plane. Hence, the performance and capabilities
of the controller itself are essential in achieving optimal performance. Furthermore, the tools used to bench-
mark their performance must be accurate and useful in measuring different evaluation parameters. There are
dozens of controller proposals for general and specialized networks in the literature. However, there is a very
limited comprehensive quantitative analysis for them. In this article, we present a comprehensive qualitative
comparison of different SDN controllers, along with a quantitative analysis of their performance in differ-
ent network scenarios. We categorize and classify 34 controllers and present a qualitative comparison. We
also present a comparative analysis of controllers for specialized networks such as the Internet of Things,
blockchain networks, vehicular networks, and wireless sensor networks. We also discuss in-depth capabil-
ities of benchmarking tools and provide a comparative analysis of their capabilities. This work uses three
benchmarking tools to compare 9 controllers and presents a detailed analysis of their performance, along
with discussion on performance of specialized network controllers.

CCS Concepts: • General and reference → Cross-computing tools and techniques; Measurement;
Metrics; Evaluation; Performance; • Networks → Network performance evaluation;

Additional Key Words and Phrases: Software-defined networks, SDN controller, benchmarking tools, Internet
of Things, blockchain, vehicular networks, wireless sensor networks

ACM Reference format:

Liehuang Zhu, Md M. Karim, Kashif Sharif, Chang Xu, Fan Li, Xiaojiang Du, and Mohsen Guizani. 2020. SDN
Controllers: A Comprehensive Analysis and Performance Evaluation Study. ACM Comput. Surv. 53, 6, Article
133 (December 2020), 40 pages.
https://doi.org/10.1145/3421764

The work of L. Zhu was funded by the National Natural Science Foundation of China (grants 61872041 and U1836212).
Authors’ addresses: L. Zhu, Md M. Karim, K. Sharif (corresponding author), C. Xu, and F. Li, Beijing Institute of Technol-
ogy, 5 South Zhongguancun Street, Haidian District, Beijing, China, 100081; emails: {liehuangz, mkarim, kashif, xchang,
fli}@bit.edu.cn; X. Du, Temple University, 1801 North Broad Street, Philadelphia, PA; email: dux@temple.edu; M. Guizani,
Qatar University, P.O. Box 2713, Doha, Qatar; email: mguizani@ieee.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/12-ART133 $15.00
https://doi.org/10.1145/3421764

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://doi.org/10.1145/3421764
mailto:permissions@acm.org
https://doi.org/10.1145/3421764

133:2 L. Zhu et al.

1 INTRODUCTION

Software-defined networks (SDNs) have seen tremendous growth and deployment in different
types of networks in recent times. They are actively used in data center (DC) networks [82, 90],
wireless and Internet of Things (IoT) networks [23, 79], and wide area and cellular networks [130],
as well as security and privacy of domains [210]. Compared to traditional networks, they decouple
the control logic from network layer devices and centralize it for efficient traffic forwarding and
flow management across the domain. This multi-layered architecture, as shown in Figure 1(a), has
data forwarding devices at the bottom in the data plane, which is programmed by controllers in
the control plane. The high-level application or management plane interacts with a control layer
to program the whole network and enforce different policies. The interaction among these layers
functions as communication/programming protocols.

Traditional networks suffer from several limitations, mainly due to diverse service requirements
and the scale of the network. Some of these are related to traffic engineering, flow management,
policy enforcement, security, and virtualization. On the contrary, SDN presents a simplified, cen-
tralized, and efficient solution to these by decoupling the data plane forwarding and control plane
intelligence. Hence, the network switches become simple forwarding devices, which route data
traffic based on the instructions from a softwarized controller. This centralized entity provides
programmatic control of the whole network and enables real-time control of underlying devices.
Using SDN, network management becomes simpler and helps in removing network rigidity.

Some of the well-known controllers are NOX [77], POX [144], Floodlight [11], OpenDaylight
(ODL) [113], Open Network Operating System (ONOS) [24], and Ryu [153]. However, many other
controllers and flavors are available in the literature. From a practical implementation perspective,
it is challenging to determine which controller will perform best in any given type of network.
Hence, the qualitative and quantitative comparative analysis of these controllers is critical. Simi-
larly, from a general control plane perspective, it is essential to evaluate whether the controller is
capable of efficiently manage the complete network and utilize the capabilities of the data plane to
its maximum capacity. Although the fundamental function of a controller is flow management and
installation, several performance metrics can be used for its benchmarking. As there are numer-
ous controllers available with different architectures and properties, it becomes imperative to have
standard benchmarking criteria for evaluation. In this regard, there are two basic requirements: a
set of benchmarking metrics and an efficient tool for benchmarking tests. Vengainathan et al. [185]
have presented an elementary list of tests that should be conducted to evaluate the performance
of a controller. However, there can be other metrics that should also be used when benchmarking
different controllers. Similarly, the tool used to perform the test in an emulated environment is
critical [106].

Scope of this study. The scope of this work is highlighted in Figure 2. SDNs have been stud-
ied from different aspects, but the two main types of studies can be classified as general SDN

surveys such as [103, 117, 194], which broadly cover the domain and many of its different com-
ponents, and SDN controller studies, which are more targeted to SDN controllers only. Within the
controller-specific studies, some works have theoretically explained the different controllers and
their properties from different aspects [18, 52, 136, 207]. However, the majority of these studies
only describe the architecture and properties of a few controllers, yet the list of controllers pre-
sented in the literature is very long. The other studies that are controller specific evaluate the
performance of controllers using testbeds for actual quantitative performance. We discuss them in
detail in Section 5.

This work extends both subcategories, as shown in Figure 2, to a great extent. First, we analyze
34 controllers for different properties (Section 3), which to the best of our knowledge has not been

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:3

Fig. 1. SDN design. (a) The layered architecture. (b) Modular structure of a generic controller.

Fig. 2. Classification and scope of this article.

done before. Second, we present a survey of controllers specialized for different parameters and
scenarios (e.g., IoT, blockchain, vehicular networks (VANETs)). Again, to the best of our knowledge,
no other work provides such a detailed analysis. Third, we collect and analyze the exiting bench-
marking efforts done by the research community for the lessons learned (Section 5 and Table 6).
Most of these efforts are small scale and only analyze 2 to 4 controllers, whereas in this work we
analyze 9 controllers, which are of interest to the community by three different benchmarking
tools (Section 6). Furthermore, we also analyze the different tools and benchmarking metrics. To
the best of our knowledge, there is no other work that brings all of these components together at
the scale and magnitude shown in this work.

Contributions and organization. The specific contributions of this work are multi-fold:

• We present a brief introduction to SDN controller architecture and the need to benchmark.
• We present a qualitative comparative analysis of 34 different controllers for their proper-

ties including the major design choices, which affect the performance and capabilities of
controllers.

• We present in detail and discuss the different use cases’ specific enhancements for different
controllers and their performance effects.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:4 L. Zhu et al.

• We present a detailed comparative analysis and evaluation methods used for different con-
trollers specifically designed (or optimized) for specialized networks such as the IoT, wire-
less sensor networks (WSNs), blockchain networks, and VANETs.

• We present a comprehensive study of benchmarking tools and the different techniques they
employ for evaluating SDN controllers. This includes the discussion on existing works and
their limitations/lessons learned, capabilities of benchmarking tools, and, most importantly,
the details of metrics that should be used for quantitative evaluations.

• We conduct a quantitative analysis of 9 different controllers using three different bench-
marking tools for a variety of metrics. The results presented show the actual performance
of the controllers. We also present a comprehensive discussion on research findings not
only for controller behavior but also for the metrics and tools used.

The rest of the article is organized as follows. Section 2 gives an overview of SDN controllers,
followed by the classification, comparison, and design choices of controllers in Section 3. Special-
ized controllers are analyzed in Section 4, whereas Section 5 describes in detail the benchmarking
studies, tools, and metrics. Quantitative evaluation results and research findings are detailed in
Section 6. Section 7 concludes the article.

2 SDN CONTROLLER ARCHITECTURE

A controller also known as the Network Operating System (NOS) is the core component of any
SDN infrastructure, as it has the global view of the entire network, including data plane SDN
devices. It connects these resources with management applications and performs flow actions dic-
tated by application policy among the devices. The proposals put forth for different controllers
in the literature do not modify the underlying controller architecture but rather differ in terms
of modules and capabilities. Hence, we find that presenting individual architectures is less useful
for the reader. Here, we present the general architecture, as shown in Figure 1(b), and discuss its
different modules.

Controller core. The core functions of the controller are mainly related to topology and traffic
flow. The link discovery module regularly transmits inquiries on external ports utilizing packet_out

messages. These inquiry messages return in the form of packet_in messages, which allow the con-
troller to build the topology of the network. The topology manager maintains the topology itself
that provides the decision-making module to find optimal paths between nodes of the network.
The paths are built such that the different quality-of-service (QoS) policies or security policies
can be forced during path installation. In addition, the controller may have a dedicated statistics
collector/manager and queue manager for collecting performance information and management
of different incoming and outgoing packet queues, respectively. The flow manager is one of the
significant modules that directly interacts with data plane’s flow entries and flow tables. It utilizes
the Southbound Interface (SBI) for this purpose.

Interfaces. Different interfaces surround the core controller for interaction with other layers
and devices [107]. SBI defines a set of processing rules that enable packet forwarding between
forwarding devices and controllers. SBI helps the controller provision physical and virtual network
devices intelligently. OpenFlow (OF) [119] is the most commonly used SBI and is a defacto standard
for the industry. The fundamental responsibility of OF is to define flows and classify network
traffic based on a pre-defined rule set. On the opposite end, the controller uses the Northbound
Interface (NBI) to allow developers to integrate their applications with controller and data plane
devices. Controllers support several northbound Application Programming Interfaces (APIs), but
most of them are based on REST API. For inter-controller communication (hierarchical or flat)

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:5

and communication with legacy routers, the East- and Westbound Interfaces (E/WBIs) are used.
There is no standard communication interface for this purpose; hence, different controllers use
different mechanisms. Moreover, heterogeneous controllers do not usually communicate with each
other. Border Gateway Protocol (BGP) [149] is the most commonly used protocol for legacy router
communication.

Modern SDN controllers and SDN design are not the first attempt at centralizing the network
control. SoftRouter [105] and ForCES [198] separate control elements from forwarding elements
but are limited to packet modification functionalities. Routing Control Platform [70] is an intra-AS
platform to expand BGP. Path Computation Engine [66] enables clients to execute path computa-
tions in routers. Intelligent Route Service Control Point [54] introduces a path allocation module in
an external router and provides dynamic connectivity features to enhance traffic flows throughout
a network. The 4D project [76] was a theoretical clean-state solution to introduce a control plane
for topology discovery and to provide traffic forwarding logic and rule sets. SANE [39] enables
traffic forwarding and access control policies using a logically centralized server within enter-
prise networks. Similarly, Ethane [38] further improves the control/topology and pre-defined flow
management.

The control plane of these earlier proposals was missing a broad range of matching header fields
and also lacks a wide range of functionalities. As a result, SDN has become mainstream with the
introduction of OF [119], which is a data plane API, and a robust centralized controller named
NOX [77]. The majority of moderns SDN controllers are completely dependent on OF.

3 CONTROLLER CLASSIFICATION AND DESIGN CHOICES

To compare different SDN controllers, we have performed an extensive search of proposals not
only in the academic literature but also in the commercial domain. Here, we first present the pos-
sible classification criteria of controllers, followed by the comparative analysis, and then different
use case–specific enhancements.

3.1 Classification and Selection Criteria

The behavior of controllers is more or less the same across all of the proposals listed in Table 1.
After analysis of 34 controllers, we conclude that the working, role, and responsibilities of the
majority of these do not present any classification basis. Perhaps the only classification criteria
that can be used is the deployment architecture. The initial aim of SDN was to centralize the control
plane; hence, most of the controllers utilized a single controller. However, this created a single
point of failure and scalability challenges. The distributed architecture allows usage of multiple
controllers inside a domain, working in a flat or hierarchical formation.

In this work, we have not limited the selection of controllers to any specific criteria. Instead, we
have collected all possible controllers from the literature and other documented projects. To the
best of our knowledge, there is no other work that collects and compares such a large number of
controllers.

3.2 Design Choices and Qualitative Comparison

Table 1 presents a comprehensive view of the different properties of the controllers. In the interest
of space and the fact that not all proposals provide extensive details about their inner workings, we
do not discuss each controller individually. Rather, we present the properties and design choices
of controllers.

It is important to note that many of these controllers are not maintained, updated, or properly
documented for the use of the research community. Similarly, many do not have their source code

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:6 L. Zhu et al.

Table 1. Comparative Analysis of SDN Controller Features

Ref.
Prog.

Language Arch. NBI SBI EWBI Platform Interface License
Multi-

Threading
Modul-

arity
Consis-
tency

Docum-
entation

Beacon [62] Java C Ad hoc OF 1.0 —
Linux, MacOS,

Windows
CLI, WUI GPL 2.0 ✓ Fair ✕ Fair

Beehive [201] Go DH REST OF 1.0, 1.2 — Linux CLI Apache 2.0 ✓ Good ✓ Limited

DCFabric [46] C, JavaScript C REST OF 1.3 — Linux CLI, WUI LGPL 3.0 ✓ Good ✓ Fair

Disco [142] Java DF REST OF 1.0 AMQP — - Proprietary — Good ✕ Limited

Faucet [16] Python C — OF 1.3 — Linux CLI, WUI Apache 2.0 ✓ — ✓ Good

Floodlight [11] Java C
REST, Java

RPC, Quantum
OF 1.0, 1.3 —

Linux, MacOS,
Windows

CLI, WUI Apache 2.0 ✓ Fair ✓ Good

FlowVisor
[162]

C C JSON RPC OF 1.0, 1.3 — Linux CLI Proprietary — — ✕ Fair

HyperFlow
[178]

C++ DF — OF 1.0
Publish &
subscribe
messages

— — Proprietary ✓ Fair ✕ Limited

Kandoo [200]
C, C++,
Python

DH Java RPC OF 1.0-1.2
Messaging
Channel

Linux CLI Proprietary ✓ High ✕ Limited

Loom [96] Erlang DF JSON OF 1.3-1.4 — Linux CLI Apache 2.0 ✓ Good ✕ Good

Maestro [37] Java C Ad hoc OF 1.0 —
Linux, MacOS,

Windows
WUI LGPL 2.1 ✓ Fair ✕ Limited

McNettle [190] Haskell C — OF 1.0 — Linux CLI Proprietary ✓ Good ✕ Limited

Meridian [17] Java C REST OF 1.0, 1.3 — Cloud based WUI — ✓ Good ✕ Limited

Microflow
[205]

C C Socket OF 1.0-1.5 — Linux CLI, WUI Apache 2.0 ✓ — ✕ Limited

NodeFlow [25] JavaScript C JSON OF 1.0 — Node.js CLI Cisco — — ✕ Limited

NOX-Verity
[77, 177]

C++ C Ad hoc OF 1.0 — Linux CLI, WUI GPL 3.0
Nox-MT

[178]
Low ✕ Limited

Onix [102] C++ DF Onix API OF 1.0, OVSDB Zookeeper — — Proprietary ✓ Good ✕ Limited

ONOS [24] Java DF REST, Neutron OF 1.0, 1.3 Raft
Linux, MacOS,

Windows
CLI, WUI Apache 2.0 ✓ High ✓ Good

Open Contrail
[65]

C, C++,
Python

C REST BGP, XMPP — Linux CLI, WUI Apache 2.0 ✓ High ✓ Good

ODL [113] Java DF

REST,
RESTCONF,

XMPP,
NETCONF

OF 1.0, 1.3 Akka, Raft
Linux, MacOS,

Windows
CLI, WUI EPL 1.0 ✓ High ✓ Good

OpenIRIS [108] Java DF REST OF 1.0-1.3
Custom
Protocol

Linux CLI, WUI Apache 2.0 ✓ Fair ✕ Limited

OpenMul [155] C C REST
OF 1.0, 1.3,

OVSDB,
Netconf

— Linux CLI GPL 2.0 ✓ High ✕ Good

PANE [71] Haskell DF PANE API OF 1.0 Zookeeper Linux, MacOS CLI BSD 3.0 — Fair ✕ Fair

POF Controller
[110]

Java C — OF 1.0, POF-FIS — Linux CLI, GUI Apache 2.0 — — ✕ Limited

POX [144] Python C Ad hoc OF 1.0 —
Linux, MacOS,

Windows
CLI, GUI Apache 2.0 ✕ Low ✕ Limited

Ravel [191] Python C Ad hoc OF 1.0 — Linux CLI Apache2.0 — — ✓ Fair

Rosemary [164] C C Ad hoc
OF 1.0, 1.3,

XMPP
— Linux CLI Proprietary ✓ Good ✕ Limited

RunOS [152] C++ DF REST OF 1.3 Maple Linux CLI, WUI Apache2.0 ✓ High ✓ Fair

Ryu [153] Python C REST OF 1.0-1.5 — Linux, MacOS CLI Apache 2.0 ✓ Fair ✓ Good

SMaRtLight
[33]

Java DF REST OF 1.3 BFT-SMaRt Linux CLI Proprietary — — ✕ Limited

TinySDN [53] C C — OF 1.0 — Linux CLI BSD 3.0 ✕ — ✕ Limited

Trema [171] C, Ruby C Ad hoc OF 1.0 — Linux CLI GPL 2.0 — Good ✕ Fair

Yanc [123] C, C++ DF REST OF 1.0-1.3
Yanc File
System

Linux CLI Proprietary — — ✕ Limited

ZeroSDN [101,
104]

C++ DF REST OF 1.0, 1.3 ZeroMQ Linux CLI, WUI Apache 2.0 — High ✓ Fair

C, centralized; CLI, Command Line Interface; DF, distributed flat; DH, distributed hierarchical; EWBI, east-west API, GUI,
Graphical User Interface; WUI, Web UI; ✓ , yes; ✕, no.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:7

available anymore; hence, quantitative analysis is not possible (or even necessary). In the following,
we discuss some of the core design choices that have been used in controllers listed in Table 1.

Programming language and implementation. Controllers have been written using different pro-
gramming languages, such as C, C++, Java, JavaScript, Python, Ruby, Haskell, Go, and Erlang. In
some cases, the entire controller is built using a single language, whereas for many other con-
trollers, multiple languages are used in their core and modules. This amalgamation of different
languages is usually done for efficient memory allocation, multi-platform compatibility, and, most
importantly, achieving higher performance under certain conditions. Hence, the choice of lan-
guage becomes an important factor in controller implementation. It is also important to note that
the implementation details may also impact the performance of a controller. Therefore, the exis-
tence of bugs in code, the use of non-standard programming practices, and the maturity of the
software become interesting evaluation criteria. Vizarreta et al. [189] show a comparison of ONOS
and ODL controllers from the software implementation perspective and conclude that software
reliability growth models can be used to increase the productivity of the overall system.

Architecture. The initial design decision of a controller is its architecture, which can be cen-
tralized or distributed. Centralized controllers are mostly used in small-scale networks, whereas
distributed controllers can span across multiple domains. They can further be classified into flat,
where all controller instances have equal responsibilities, or hierarchical, where a root controller
is present.

Programmable interface (API). Generally, the northbound API (NBI) allows the controller to facil-
itate applications like topology monitoring, flow forwarding, network virtualization, load balanc-
ing, and intrusion detection based on the network events that are generated by data plane devices.
However, low-level APIs like the southbound API (SBI) is responsible for enabling the commu-
nication between a controller and SDN-enabled switches or routers. Additionally, the east-west
API is used by multiple controllers from different domains to form peering with each other in a
distributed or hierarchical environment. Not all controllers provide all APIs, and only a select few
have customized them for their specific use.

Platform and interface. These properties describe the implementation of the controller to be
compatible with a specific operating system. The majority of controllers are built on top of Linux
distributions. Moreover, to configure and view statistical information, some controllers provide
graphical or web-based interfaces to the administrators.

Threading and modularity. A single-threaded controller is more suitable for lightweight SDN
deployments. In contrast, multi-threaded controllers are suitable for commercial purposes such as
5G, SDN-WAN, and optical networks. However, a controller’s modularity allows the integration
of different applications and functionalities. High modularity allows a controller to perform faster
task execution in a distributed environment. It is important to note that the worker threads are used
for many monitoring tasks, which result in better performance. The basic task of flow installation
itself is not hyper-threaded.

License, availability, and documentation. Most of the controllers discussed in this article are li-
censed as open source. However, a few have a proprietary license, which means they are only
available through special requests or for research purposes. Regular maintenance of these con-
trollers is also a challenging task for the developers, which is why a number of them do not re-
ceive regular updates. Nevertheless, the source code is available online, allowing anyone to make
further changes according to the requirements. While accessing them online, we have found that
the majority of them lack proper documentation. On the contrary, the ones that are updated regu-
larly feature detailed and updated documentation for all of the available versions and also include
community-based support.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:8 L. Zhu et al.

Fig. 3. Controller specializations.

4 COMPARATIVE ANALYSIS OF GENERAL AND SPECIALIZED CONTROLLERS

The discussion in the previous section and Table 1 give a general qualitative comparison. The ma-
jority of these controllers have been either discontinued (i.e., not maintained or updated) or have
not been used by works in the SDN domain (i.e., academic research or industry). Hence, it is not
useful to discuss each one in detail. In this section, we focus on more specific specializations of
these controllers and then present detailed comparative analysis on them. Most controllers are
designed for wired or optical domain networks, which are usually not mobile and have abundant
resources. Some of the controllers have been optimized for specific enhancements. Similarly, there
are scenarios where controllers are required to change or extend their architecture, applicability,
and communication protocols to accommodate specialized networks. These networks include the
IoT, VANETs, WSNs, and blockchain networks. Figure 3 shows these specializations and classifi-
cation. In the following section, we first discuss these controllers (with specialized enhancements)
and then discuss the controllers for specialized networks.

4.1 Use Case–Specific Enhancements to SDN Controllers

The adoption of different controllers and SDN, in general, has also triggered enhancements and use
case–specific improvements for different controllers. Here, we have grouped these enhancements
into different categories and summarize how they improve the capabilities of controllers.

4.1.1 Network Monitoring. Network monitoring has become one of the most crucial use cases
of SDN controllers. The controller takes advantage of the global view of topology and proactively
queries the performance. OpenTM [179] was proposed as a module for NOX, which is one of the
earliest open source OF controllers. This monitoring scheme evaluates the traffic matrix of OF
switches with a consistent polling rate. However, this also leads to higher monitoring overhead.
Adrichem et al. [183] presented OpenNetMon, a Python-based module for the POX controller to
monitor end-to-end per-flow QoS metrics like throughput, delay, and packet loss. From the statis-
tical analysis results, the approach for monitoring throughput is excellent, although continuous
polling of information may cause overhead on the controller. Flow monitoring is limited to edge
switches only. Payless [47] implemented over the Floodlight controller is another query-based
monitoring framework that can request the desired QoS metrics using a set of well-defined REST-
ful APIs. However, some trade-off between accuracy and overhead can lead to slight performance
degradation for different polling intervals. SDN Interactive Manager [88] and OFMon [99] are two
recent implementations of network monitoring modules that have been built over the Floodlight
and ONOS controllers, respectively.

4.1.2 Load Balancing. The SDN controller plays a vital role in enabling load balancing in dis-
tributed systems by optimizing resource allocation, minimizing response time, and maximizing
the throughput of that system. Without rewriting IP addresses, Handigol et al. [78] implemented

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:9

a method where the NOX controller can be used along with the OF switch reactively to reduce re-
sponse time for load balancing of multiple web servers. Contrarily, Uppal and Brandon [182] used
address rewriting techniques for a NOX-based load balancer, which cuts down cost and brings
flexibility. Another NOX-based proactive load balancer was proposed by Wang et al. [193], which
uses OF wild card rules that can achieve faster adaptation with new load balancing weights and to
redistribute the existing weight more efficiently. Based on switch migration technique, Liang et al.
[111] presented a dynamic load balancing method that has been implemented over the cluster ODL
controller. However, this method may fail in large-scale networks due to the coordinator node’s
recurring load collection issue.

4.1.3 Network Virtualization and Cloud Orchestration. With the addition of network virtual-
ization techniques, SDNs have gained a new dimension with the ability to allow network slicing
and multi-tenant hosting on existing physical network resources. FlowVisor [162] is the most
popular SDN-based implementation to utilize virtual networks by leveraging OF functionality to
abstract the underlying hardware. VeRTIGO [49] is an extension of FlowVisor that provides the
controllers to choose the depth of virtual network abstraction required. This extension increases
more flexibility in provisioning SDNs, although at the cost of hypervisor complexity. To reduce
the complexity of network management, Xingtao et al. [196] presented an SDN controller built on
Docker [57] to improve the deployment speed with expanded mobility. In the work of Drutskoy
et al. [58], the flexibility of the NOX controller has been used as a container-based controller virtu-
alization module to effectively cache and manage mappings between virtual networks and physical
switches. HyperFlex [32] proposes a control plane virtualization model that mainly aims at achiev-
ing scalability, privacy, and extensibility. In this architecture, FlowVisor and Ryu controllers have
been combined to provide the core hypervisor functions and to control the hypervisor network,
respectively.

Cloud orchestration defines the integration of SDN controllers with a cloud-based resource man-
ager, such as OpenStack [173], to enable dynamic inter-working between DCs, wide area networks,
transport networks, and other enterprise networks. In the work of Mayoral et al. [118], ODL is
integrated with OpenStack Havana [139] to evaluate the effectiveness of SDN in a cloud-based ar-
chitecture where multiple DCs are located in different domains. In this architecture, the controller
communicates with Havana using its REST NBI to perform critical tasks such as building, removal,
and migration of virtual instances, which are located in inter-DC and intra-DC environments.

4.1.4 Policy Enforcement. To enhance security and flexible network management, an SDN con-
troller can assign different policy-based decisions by implementing flow-based forwarding rules.
Hinrichs et al. [81] implemented NOX as an application to provide access control and external au-
thentication and to enable policy enforcement along with network isolation. PANE [71] presents
an API to allow administrators to install policies for bandwidth allocation, access control, and path
control. Additionally, the API provides the capability to query the state of the network or to provide
information to the SDN controller regarding future traffic characteristics. PolicyCop [20], based
on the Floodlight controller, is an autonomic QoS policy enforcement architecture that presents an
interface for specifying QoS requirements in service-layer arguments and implementation through
the OF API. In addition, it can monitor different policies so that control plane rules can be modified
with changing traffic conditions autonomously. An extra module of the ONOS controller has been
extended to implement a policy-based secure framework in the work of Varadharajan et al. [184].
The authors allowed end-to-end SDN services across various domains, including inter- and intra-
domain, using a wild card–based policy language, which includes a group of entities and services.
Associated action such as acceptance or denial of a request is executed when a policy statement is
satisfied.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:10 L. Zhu et al.

Table 2. Comparative Analysis of SDN-Based IoT Controllers and Control Plane Architectures

Ref.
Control
Plane

Controller
Design*

Source Code
& Documen-

tation
Objective of
Controller

Evaluation
Method

Evaluation
Tools

Benchmark
Metrics Remarks

[2] C
Minor changes

(to ODL)
Design

diagrams only

IoT service mgt.
Policy mgt.
Multi-domain

Small-scale
emulated

10 vSwitches &
4 FTP server

OpenStack
Mitaka OVS

E-to-E latency.
Traffic flow rate.

Better failure
detection.
Comparison to ODL
only.

[43] DH

New (IoT Dev.
Mgt.)

Minor changes
(Net. Controller)

Source code
[42]

No doc.

Minimize flow-setup
delay

Large-scale
physical testbed

68 x Raspberry Pi
3B with Amazon

Web Services

Docker OVS
Cassandra
GlusterFS

CPU & memory
utilization. CPU
temp.
throughput.
Response &
converg. time.

Compared to Ryu,
ONOS, ODL, Zero
SDN, & BLAC.
Different scenarios.

[100] C New [126, 127]
Source code &
doc. [21, 125]

Node & state mgt.
Security & policy
conflicts

Small-scale emul.
& physical testbed
2 x Odroid-XU32

CBench OVS
2.9.1 Mininet

2.2.1

Latency.
Throughput.
Policy
overhead.

Partial eval. against
NOX.
Parallelized
event-driven model
performs better.

[109] DF
Minor changes

(general)
Theoretical

only
Virtual & overlay
device mgt.

Large-scale simu.
& emulated 30 x

IoT dev., 6 x
virtual nets., & 4 x

controllers

ORBIT
sandbox Geni

OMNet++

Delay.
Throughput.

Framework evaluated
against Devoflow,
Hedera, & Geni.
More controllers
improve scalability.

[122] C
Minor change

(to POX)
Theoretical

only
Task offloading

Medium-scale
simulated 15 x

APs, 5 x fog nodes

Mininet
OpenNetMon

Task offloading
& delay rate.
Avg. hop count.

Evaluated against
POX, which has no
offloading

[175] C
Minor changes

(for IoT
Protocol)

Design
diagrams only

Control routing
protocol. Monitor
runtime
components.

Medium-scale
emulated 21 x IoT

nodes

Cooja Contiki
OS Zolertia Z1

Control
overhead.
Packet delivery
ratio.

No benchmarking.
Self-performance
comparison.

[203]
[204]

DF

New (IoT Dev.
Comm.)

Minor changes
(ONOS & OSM)

Partial code &
doc. [9]

Connectivity &
flow-rule mgt.
Security.

Small-scale
emulated vCore

servers, 6lowPAN
devices, & Docker

instances

Cooja Contiki
OS Apache

Kafka Django

Attack
detection rate.
Event
processing rate.

Better performance
shown in terms of
enforcing necessary
policies

C, centralized; DF, distributed flat; DH, distributed hierarchical.
*General: Changes are made to an abstract/generic controller model.

4.2 SDN Controllers for the IoT

An SDN controller in an IoT scenario is required to maintain simultaneous communication with
the SDN switches (OF compatible access points) and the IoT devices [3, 69]. Additionally, the ma-
jority of IoT environments are heavily dependent on cloud and fog networks to provide optimal
performance [6]. Therefore, IoT-aware SDN controllers would require an extended layer of SBI
along with OF to communicate with IoT devices. Regarding the internal architecture of an SDN
controller, additional modules like the protocol interpreter should be integrated with the main
module. We present a comparative analysis of such solutions in Table 2 and a detailed discussion
on performance in the following. As the focus of this work is on evaluation and benchmarking of
controller performance, we discuss these details in more depth as compared to other SDN generic
features.

Some of the works discussed in Table 2 (e.g., [43, 100]) have proposed completely new con-
trollers. In contrast, others have made significant or minor modifications to existing controllers to
work with IoT networks. Chattopadhyay et al. [43] propose a multi-layer control plane, where the
top and middle layers contain service and network controllers, respectively. In contrast, the bottom
layer has multiple lightweight controllers, termed as micro-controllers [42]. These micro-controllers
are custom built on top of IoT devices and orchestrate with the network controller for information

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:11

sharing and necessary task initialization. This controller as a service allows in-network processing
that improves scalability and flow processing time. The performance has been evaluated using two
large testbeds of multiple Raspberry Pi 3(B) nodes and the dockerized environment with 68 Ama-
zon Web Service nodes, respectively. The authors compare their micro-controllers with ODL [113],
ONOS [137], Ryu [153], and Zero [101, 104] using metrics like memory consumption, temperature,
and utilization of the CPU. They also compare their framework with BLAC [84] using various IoT-
based applications such as HTTP-server (data transfer), Cassandra (data-driven app), and Gluster
(file sharing and fault tolerance). These tools are used to compare metrics such as throughput,
response time, download time, and convergence time. Despite showing notable performance im-
provement for the framework and controller, the overall architecture is not technically detailed
enough to be improved by other researchers. Moreover, the technicalities of integration between
IoT-based devices and three identical types of controllers are not entirely defined. Kim et al. [100]
also propose a new controller, but it is targeted for security policy enforcement and access con-
trol. The proposed SODA design interprets incoming raw packets from IoT devices and translates
them into control messages, which later transforms as policy instructions for those devices. La-
tency comparison with existing NOX-MT controller and real-world testbed evaluations shows the
efficiency and effectiveness of such hybrid controller adoption for IoT scenarios.

Some works [109, 175, 203] do not propose a new controller but have made significant changes
to existing controllers to achieve better performance or to adapt them for specific IoT network
functions. Zarca et al. [203, 204] present a unified SDN-NFV framework using SDN and an IoT con-
troller for IoT device security. The IoT controller acts as an IoT gateway and enforces policies. The
testbed implementation of this framework is staged with multiple machines, where ONOS [137]
and OSM [64] are used for SDN security enforces. In contrast, the IoT controller uses Contiki OS
2.7 [59] with an Erbium CoAP [63] server and a policy-based repository and orchestrator services
on an Intel Haswell processor-based workstation. Evaluation is entirely for security metrics such
as incident handling efficiency, policy interpretation, and enforcement. This work presents a sub-
stantial contribution in terms of framework and testbed implementation. However, the authors
only consider the self-defined evaluation and do not compare the performance with other solu-
tions. Theadorou et al. [174, 175] propose heterogeneity and mobility-aware services in an IoT en-
vironment using a modified control and application plane. The controller uses adaptive-RPL [188]
for device communication. The authors build a medium-scale emulated 6LoWPAN [85] testbed
integrated with Cooja Simulator [176] and Zolertia Z1 [211] motes running Contiki OS [59]. The
evaluation uses real trace data from Alay et al. [4] and measures the packet delivery rate. However,
benchmarking is limited to the authors’ self-defined experiments. The framework itself is promis-
ing for adoption into IoT-based networks but lacks necessary technical details, such as algorithms
and packet processing methods for controller modules. Li et al. [109] propose LS-SDV, a double-
layer distributed yet flat control plane to manage virtual networks and IoT devices in large-scale
infrastructure. Physical and virtual controllers in two-layer overlay organizations manage real and
virtual networks while focusing on flow scheduling and traffic optimization. Evaluation is done
using OMNet++, as well as on a four-controller testbed. Thirty IoT devices use 180 video streaming
traces to measure throughput and delay as compared to Hedera [1] and Devoflow [50]. Theoreti-
cally, this work provides complete algorithms and their proofs; however, lack of implementation
details and source code makes it impossible for open benchmarking.

In other works (e.g., [2, 12, 14, 122, 129, 150]), minor changes have been proposed, such as the
addition of simple modules at the application layer or on the top of the existing control plane.
Most of these do not change the functionality of the controller but instead provide additional
services. Misra and Saha [122] propose a dynamic task-offloading scheme using a centralized
controller in a fog-enabled IoT environment. It uses ILP and greedy heuristic algorithms to find

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:12 L. Zhu et al.

optimal processing fog nodes. The framework is implemented in an emulated testbed consisting
of Mininet [121] and POX [144]. The evaluation is done against similar algorithms; hence,
controllers’ performance is not the measured parameter.

In some other works (e.g., [22, 150, 151, 206]), SDN has been used for IoT, but they do not
propose a new control plane architecture or the controller. As the objective of this work is to
present controller benchmarking, we have not included them in Table 2. For example, Ren et al.
[151] present a distributed hierarchical control plane architecture to resolve the bottleneck issues
with large-scale IoT devices and applications. However, technical details regarding the working
of modules are not available, and evaluation is done using Matlab. Therefore, it is not possible
to present or discuss implementable information that would be beneficial to the audience of this
work.

Comparative analysis and insights. The design innovation of SODA [100] has a slight advantage
over ANASTACIA [203], as SODA integrates an entirely custom-built Barista [126] controller.
However, the ANASTACIA framework has a well-defined implementation, testbed specifications,
and performance benchmarking criteria. Although both frameworks deploy NFV functionalities to
detect and mitigate security vulnerabilities, evaluation metrics such as detection time and incident

handling performance of ANASTACIA showcase its applicability. The rest of the works are limited
to theoretical frameworks, and they only extend the functionalities of the existing controllers.
Moreover, some of these works provide a limited comparison to similar proposals. Mininet and
OVS are heavily involved in most testbeds along with existing controllers such as ONOS, ODL,
Ryu, and POX. In the case of a simulated environment, Cooja Simulator is used along with Contiki
OS.

Performance metrics used. The benchmarking metrics used in these works is very similar to those
earlier described. However, they are much more simplified. These include throughput, delay, control

overhead, packet delivery rate, and end-to-end latency.

4.3 SDN Controllers for Blockchain-Based Networks

Blockchain facilitates verification of transactions through distributed network authorization and
then commits that data to an immutable ledger [28, 30]. The decentralization reduces control from
a single node, eliminating the chance of single-point failure [27, 29]. As an emerging field for secure
communication, blockchain has also been integrated with SDN [147], which has given numerous
benefits, especially in the domain of IoT. In this section, we have collected and analyzed those
works that are focused on blockchain and SDN amalgamation while keeping in view the controller
enhancement and benchmarking as shown in Table 3.

StewARD [34, 35] presents a new SDN controller that allows the IoT device to interact with
blockchain elements. The objective is to automate security risk detection in home-IoT devices.
Although this work presented design details for grouping, network slicing, and communication,
the testbed for evaluation is not present. Hence, the actual working or its benefits cannot be
determined.

Rathore et al. [146] do not introduce an entirely new controller for the blockchain-based SDN
paradigm; alternately, they make significant changes to the existing controllers. These changes
are mainly to incorporate a blockchain layer parallel to the control layer, which contains dif-
ferent blockchain elements. From a benchmarking and testbed perspective, the work of Rathore
et al. [146] proposes the use of multiple SDN controllers in the fog layer, which use a blockchain
network to enforce security policies. The authors use a medium-scale testbed where the blockchain
layer on the fog and cloud is implemented through the Ethereum [148] platform. Moreover,
Mininet [121] is used to emulate the SDN switches. Additionally, Amazon EC2 is used as a cloud
controller to implement machine learning functionalities. On the other side, the POX [144] con-

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:13

Table 3. Comparative Analysis of Controllers for SDN-Based Blockchain Networks

Ref.
Control
Plane

Controller
Design

Source Code
& Documen-

tation
Objective of
Controller

Evaluation
Method

Evaluation
Tools

Benchmark
Metrics Remarks

[35] DF
New controller
(proposal only)

-
Trust level eval.
Home IoT device
failure reporting.

— —
Perf. behavior.
Trust
assessment.

No benchmarking.
Summary of
implementation only.

[55] C
Minor changes

(to ONOS)

Design
diagrams &
algorithms

only

Identify malicious
instructions. Detect
vulnerable flow
rules. IDS.

Small-scale
emulated

Mininet OVS
OpenStack
Multi-chain

False positive.
Detection
accuracy.
Training
efficiency.

Different attack
scenarios evaluated

[74] C
Minor changes
(proposal only)

Diagrams &
theoretical

information

Manages RSU &
gNodeB for 5G
VANET. Security
policies.

Medium-scale
simulated WAVE,

1000-m Tx, 4
lanes, 10 cars/lane

MATLAB NS-3
Hyperledger
Fabric 1.0.2

Packet delivery.
Tx delay.

No control plane
evaluation.
Overall feasibility
evaluated.

[83] DH
Minor changes
(new modules
to Floodlight)

Algorithms
only

Detect illegal flows.
Security.

Small-scale
emulated 1 x

controller, 6 x OF
switches, 1 x

Ethereum node

Mininet OVS
sFlow-RT

Truffle Suite

Attack
mitigation rate.
Detection
accuracy.

IDS & IPS as part of
controller.
REST API for BC
interaction.
Eval. for inter- &
intra-domain.

[146] DH

Major changes
(to cloud EC2)
Minor changes
(to fog & edge

POX)

Testbed im-
plementation

only

ML-based cloud
controller. Detect &
classify malicious
patterns. Enforce
security policies.
Detect BC-based
attacks.

Medium-scale
emulated 15 x

computers

Mininet OVS
Ethereum

Truffle Suite
NSL-KDD

dataset

Accuracy.
Predictive
value.
Detection rate
& time.

Self-defined test for
eval.
No comparison to
existing controllers

[147] C
Minor changes
(for NFV & BC)

Design
diagrams only

Aggregate network.
Slice RF spectrum.
Policy
implementation.

Large-scale
simulated 72 RF

slices divided into
BC, cellular, edge,

& user layers

—

Throughput per
user.
RF allocation
rate.

Testbed details not
available.
Self-defined RF
allocation evaluation
only.

BC, blockchain; C, centralized; DF, distributed flat; DH, distributed hierarchical.

troller is implemented on the fog layers, resulting in an interesting setup, as it has enabled the
authors to measure the detection efficiency and resistance of the proposed decentralized frame-
work. Traditional SDN properties are not presented in this work.

Several works [55, 83, 93, 143, 208] have presented minor changes by adding a module at the ap-
plication layer for communication with an independent blockchain network. A distinct evaluation
set up in this regard is by El Houda et al. [83], which uses a centralized SDN controller to mitigate
DDoS attacks. The authors implement the framework in a small-scale emulated testbed. Mininet,
OVS, and Floodlight [11] controllers are used to emulate multiple Linux-based hosts, OF switches,
and a centralized SDN controller, respectively. The authors deploy their proposed smart contracts
on a private blockchain using Ganache [181], an emulator to test blockchain-based smart con-
tracts. Besides this, the smart contract is also initialized on Ropsten, an Ethereum-based testbed.
sFlow-RT [86] is configured to work with the Floodlight controller to monitor the performance of
the available switch ports. Evaluation is done based on the attack mitigation rate and detection
accuracy. However, they are not benchmarked against other solutions. Other works (e.g., [74, 195])
also integrate blockchain with SDN. Nonetheless, they are not targeted for controller designs.

Comparative analysis and insights. In terms of implementation and measured efficiency, Block-
SecIoTNet [146] provides a better overall framework. Components of the testbed scenarios are
technically explained, and the work shows the implementation feasibility as well. On the con-
trary, the rest of the solutions listed earlier mostly emphasize theoretical representation and do
not deliberate on the implementation and benchmarking of the solutions. Furthermore, the use of

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:14 L. Zhu et al.

tools such as MATLAB or NS-3 does not demonstrate the working principle of blockchain-based
smart contract applications, APIs, or communication protocol between SDN and blockchain. Most
of the solutions use an emulated medium-scale testbed, where either Amazon EC2 or OpenStack is
used to build a cloud-based network. In addition, Mininet with OVS is exploited to form the SDN
scenario. The majority of the proposed works use ONOS or POX to implement necessary control
plane functionalities as additional modules. For emulating a blockchain-based environment, Truf-
fle Suite is used to deploy smart contracts, build the custom application, and initiate necessary
tests. Perhaps the most important thing from an evaluation perspective is the lack of available
implementation and for independent evaluation and analysis for future works.

Performance metrics used. Most of these solutions in this domain are designed to enforce security
policies. Hence, the metrics for the controller and, more importantly, the complete framework
evaluation have also changed. These include attack detection accuracy, false-positive rate, attack

mitigation ratio, and adaptation efficiency regarding blockchain-based functionalities.

4.4 SDN Controllers for VANETs

In a software-defined vehicular environment, other than the management of forwarding devices in
the data plane, the controller has to manage (and in some cases become) cellular base stations, the
radio access network, Road Side Units (RSUs), and smart vehicles [41, 89, 199]. Additionally, recent
5G deployment integrates cloud, fog, and edge elements into the network. Therefore, distributed
SDN controllers are necessary to tackle the challenges of current VANETs. In this section, we focus
on the literature presented in Table 4, which aims at introducing new or improved controllers only
(not general SDN or NFV solutions) for VANETs.

Some works [44, 154] propose significant changes to existing controllers. Chekired et al. [44]
propose SliceScal, which is a hierarchical framework with three different controllers (i.e., edge, fog,
and cloud controllers). Together they enable network slicing, mobility management, handover, and
end-to-end communication for 5G VANETs. The authors use NS-3 [134] with Veins-SUMO [167]
for vehicular traces and also build a testbed with ODL to manage OF switches and POX [144] as
the cloud controller. The controllers are stand-alone machines, whereas Mininet 2.1.0 [121] and OF
1.3 [138] create the SDN environment. The setup used is relatively small, and the evaluation done
is to measure delay/latency, where the comparison is not made with other state-of-art solutions. In
another work, Sadio et al. [154] propose a prototype of a complete SD-VANET framework for cel-
lular network infrastructure to facilitate intelligent forwarding decision making by the centralized
controller. This controller communicates with various devices such as BS, RSU, and RAN elements.
The work presents different algorithms and then evaluates them on a small testbed. It uses Zodiac
Fx [133] switches and Ryu [153] as the centralized controller. The proposed routing scheme and
the best path selection algorithm are implemented under the PureSDN [45] framework and later
integrated to the Ryu controller. In contrast, the Odin [114] framework on TP-Link AC1750 de-
vices creates the WiFi Access Points. Although the performance is not benchmarked against any
other solution, the authors measure different metrics, including inter-channel handover and inter-
technology handover. Moreover, the implementation is not available; instead, the algorithms are
given in the article.

Some works (e.g., [13, 75, 115, 166]) have made minor additions to controllers to achieve better
data sharing and provide authentication to devices. From an evaluation and testbed perspective, the
works of Luo et al. [115] and Garg et al. [75] are interesting. Luo et al. [115] use OF-enabled RSUs,
which use SBI to communicate with vehicles, whereas specialized NBI is used for applications.
They use the OF extension [135], which is rarely used by the research community to evaluate
SDNs. Garg et al. [75] introduce an SDN-based centralized control plane framework as a part of
their proposed scheme to provide privacy and end-to-end security. It adopts the mobility model

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:15

Table 4. Comparative Analysis of Controllers for VANETs

Ref.
Control
Plane

Controller
Design*

Source Code
& Documen-

tation
Objective of
Controller

Evaluation
Method

Evaluation
Tools

Benchmark
Metrics Remarks

[40] C
Minor changes

(general)
Design

diagrams only

Path optimization.
Load balance.
Reduce control
overhead.

Large-scale
simulated

500 vehicles,
2 km2, 20 x nodes

NS-3.26 SUMO
v0.32 Open-
StreetMap

Delivery ratio.
Throughput.
Delay. Routing
overhead.

No benchmarking to
controllers.
Controller tasks
given theoretically.

[44] DH
Major changes

(to POX & ODL)

Design
diagrams &
algorithms

given

Resource sch.

Small-scale
simulated 4 lanes

on 20-m road,
10 smart vehicles

NS-3 Veins
SUMO Mininet

2.1.0

Handling &
propagation
latency. Slicing
rate. Delay.

Multi-controller arch.
Evaluation for
resource scheduling
& slice mgt.
Inter-controller
comm. not defined.

[75] C
Minor changes

(general)

Design
diagrams &
algorithms

given

IDS.
Authentication.

Large-scale
simulated 9 km2

with highways,
300 vehicles

NS-3 SUMO
SPAN

Detection time.
False positives.
Accuracy.

No benchmarking.
Various attacks &
IDS evaluated.

[115] C
Minor changes

(general)
Design

diagrams only

Collect context on
resources.
Data sharing.

Small-scale
simulated 1 x BS,

5 x RSUs,
7 vehicles

NS-3 SUMO
Received data
ratio. Delay.
Scheduling rate.

No benchmarking.
Controller is a
simulated BS.

[154] DF

Major changes
(to net. cont.)
Minor changes
(SDRAN cont.)

Algorithm
given

Handover mgt.
RAN mgt.
Path selection.

Small-scale
emulated 3 x APs,

4 OVS, 2
controllers

Zodiac FX
PureSDN Wi-5

Project

Tx time. RTT.
Handover rate.
Latency.

Modules are
integrated on Ryu &
Odin-wi5 controllers.

Eval. is of
framework.

[168] DH
Minor changes

(general)

Design
diagrams &
algorithms

given

Routing & path
optimization

Large-scale
simulated 20 x
RSU, 1,500 km2

NS-3 SUMO
State collection
rate. Overhead.
Latency.

Evaluation of routing
only.
No controller
benchmarking.

[192] DH

Major changes
(net. cont.)

Minor changes
(for BS)

Design
diagrams &
algorithms

given

Sense traffic
patterns.
Route comput.

Medium-scale
simulated 6 x bus
lines, 3 x RSUs,

15 x buses

Simulation
tool in C++

Request
lifetime.
Vehicle interval
rate.

Eval. limited to
probabilistic analysis
of routing strategies.
Sim. tool details not
given.

C, centralized; DF, distributed flat; DH, distributed hierarchical.
*General: Changes are made to an abstract/generic controller model.

from Sedjelmaci and Senouci [158], and two parallel highways with 300 vehicles are simulated
using NS-3 and SUMO [170]. It compares the framework to other security solutions in terms of
accuracy, detection rate, false-positive rate, and detection time.

Finally, some works (e.g., [40, 94, 132, 140, 168, 192]) present frameworks that target VANET
and SDN hybrid systems. However, they either do not technically detail the controller design or
control plane architectures. Despite this fact, a few of these are listed in Table 4 as they provide
testbed specifications with some tools that would be beneficial to an interested reader.

Comparative analysis and insights. Most of the performance evaluations in SDN-VANET are initi-
ated from a simulated testbed rather than real ones, due to implementation challenges of emulated
vehicles or highways. As a result, the majority of the works in this section have multiple scenarios
for both simulated and partially emulated nodes. In terms of emulated testbed implementation,
The work in Sadio et al. [154] presents better technicalities and specifications, which involves
multiple open source tools like PureSDN, Zodiac FX, Odin Agent, and the Python Twink [95] OF
library. However, SliceScal [44] shows better performance when compared to other solutions. The
implementation of SDN in VANETs is very promising in terms of tackling critical challenges like
mobility, scalability, handover, and path selection. However, SDN alone cannot solve these issues.
Therefore, integration of key technologies such as fog, cloud, NFV, network slicing, virtualization,

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:16 L. Zhu et al.

Table 5. Comparative Analysis of Controllers for WSNs

Ref.
Control
Plane

Controller
Design*

Source Code
& Documen-

tation
Objective of
Controller

Evaluation
Method

Evaluation
Tools

Benchmark
Metrics Remarks

[7, 8,
73]

C
New set of
controllers

Source code
[120]

API for sensor
nodes. Policy mgt.
Trusted authority
for nodes.

Large-scale
emulated 100 x
sensors, 80 km2

Mininet IBM
TPM

Received ratio.
Delay.

ONOS extended for
NFV & policy
enforcement.
No benchmarking.
Basically an
upgraded version of
SDN-WISE.

[19] DF
Minor changes

(general)

Design
diagrams &
algorithms

given

Optimize beam
formation & energy
allocation.
Policies mgt.

Simulated —
SNR.
Energy req.

No benchmarking.
Eval. of algorithms.
Sim. specs. not given.

[128] DH
Major changes
(SDN-WISE)

Design
diagrams only

Security & energy
mgt. Cluster mgt.

Medium-scale
simulated

36 nodes, grid
topo.

Cooja Contiki
Powertracek

Delivery rate.
Delay.
Overhead.
Energy req.

Eval. against
SDN-WISE &
IT-SDN.
WSN API
implemented.

[172] C
Minor changes

(SDN-WISE)

Design
diagrams &
algorithms

given

Cluster formation.
Topo mgt. &
routing.

Large-scale
simulated
200 nodes

Cooja Contiki
3.0 SDN-WISE

API

Loss rate.
Overhead.
Delay. Net.
lifetime.

Eval. against
SDN-WISE.
NOS concept adopted
from SDN-WISE.

[202] C
Minor changes

(general)

Design
diagrams &
algorithms

given

Neighbor discovery
& routing.

Medium-scale
physical 6 nodes,

30-km2 area

Raspberry Pi
devices

Net. lifetime.
Delivery rate.
Energy req.

No benchmarking of
controller.
Incomplete testbed
specs.

C, centralized; DF, distributed flat; DH, distributed hierarchical.
*General: Changes are made to an abstract/generic controller model.

and next-generation cellular networks (5G, 6G) will prove to be the decisive factor to improve
scalability, reliability, and security in SDN-VANET frameworks. Another direction that is missing
is that of unmanned aerial vehicles (UAVs); however, as it is more like a sensing application, hence
we touch again on it in the next section of sensor networks.

Performance metrics used. The overall evaluation metrics used in SDN-based VANET solutions
are end-to-end delay, handover ratio, packet overhead rate, delivery ratio, round-trip time (RTT), and
handling latency.

4.5 SDN Controllers for WSNs

Preserving the available energy to increase the lifetime of the network is considered to be one of
the most critical metrics for evaluating the performance of WSNs [124]. Therefore, the controller
in the software-defined WSN plays a significant role as it reallocates the resource-hungry tasks
from the sensor nodes. Furthermore, the controller may also be responsible for managing and
configuring nodes (e.g., the transmission range) to optimize the network overhead. The controller
also makes a significant impact in terms of security and policy management. Table 5 presents a
comparative analysis of the controller and control plane architectures, which have contributed
significantly in this regard.

The most comprehensive work in WSNs is that of Galluccio et al. [73] (SDN-WISE), which
was further augmented by Anadiotis et al. [7, 8]. It proposes an entirely new controller as an
integrated component of the WSN framework. Anadiotis et al. [7] have further built a flexible
flow-based rule framework to improve energy efficiency in WSNs. The most compelling aspect
of this framework is a lightweight NOS (similar to Contiki OS [59] or RIoT [61]), with different
modules for path management, network-function consolidation, context distribution, resource
storage, and rule identification. In addition, the authors propose new NBI and SBI to communicate

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:17

with sensor nodes in the data plane. Furthermore, it provides sensor-based applicability to the
ONOS controller. Performance evaluation and benchmarking are done for controller response
time, payload efficiency, and RTT in different WSN network settings.

Other works (e.g., [19, 128, 172, 197, 202]) have added minor modules in their work to enable
node cluster formation and improve QoS, energy management, and optimization. Notable among
these works are those of Tan et al. [172], who propose a QoS-based routing protocol and a clus-
tering algorithm for workload reduction, and Younus et al. [202], who present an energy-aware
routing protocol with a centralized SDN controller. Ndiaye et al. [128] proposed multi-layered hi-
erarchical control plane architecture to allocate resource-oriented task distribution management
modules for wireless sensor environment. The work of Tan et al. [172] uses Cooja Simulator [176]
with Contiki 3.0 [59] to model a small wireless network and evaluate the performance in terms
of network lifetime, end-to-end delay, and control message overhead with other algorithms. It is
interesting to note that this work relies on SDN-WISE,; hence it shows a slight improvement in
comparison to it. The work of Younus et al. [202] is evaluated on a physical testbed consisting of
multiple Raspberry Pi [145] devices like sensor nodes and a separate desktop PC as the controller
module. Evaluation metrics such as network lifetime, packet delivery ratio, number of an existing
node, average delay, and energy efficiency are considered to benchmark the framework against
the AODV [141] protocol.

Comparative analysis and insights. The domain of WSNs has been extensively researched, and
IoT architectures have steadily replaced most of its implementations. Hence, there are very few
recent articles on controller designs for it. The work of Galluccio et al. [73] is perhaps the only
solution that effectively uses SDN controllers in a wireless environment. Most of the evaluation of
SDN in WSN is based on simulation using Cooja and Contiki OS. In this regard, other works [7,
73] are better solutions as they extend the ONOS [137] controller, which can then be integrated
with Mininet. However, a significant challenge is of benchmarking in the WSN paradigm. As not
many solutions are available, and the generic controller does not have wireless capabilities, there is
nothing to compare to. Other works have more or less emphasis on the theoretical analysis of the
proposed solutions rather than demonstrating as practical implementation. Exceptional use of a
software-defined WSN can also be found in UAVs, as they are also wireless and energy-constrained
devices. Very few works on the SDN-UAV domain are available [5, 36, 60, 157]; hence, specialized
distributed controllers for them can be a primary research direction. Most of these only address
routing and network management but not detail the controller architecture.

Performance metrics used. The overall evaluation metrics used in SDN-based WSN solutions are
packet delivery, energy consumption, average delay, network lifetime, and control message overhead

rate.

5 BENCHMARKING METRICS AND TOOLS

Theoretical comparison based on features and properties does not reflect the actual performance of
any controller. Hence, real deployment and benchmarking are necessary for accurate evaluation.
Here, we first present an overview of the necessity and importance of evaluating controllers, and
then discuss existing efforts for benchmarking along with valuable lessons learned. Finally, we
present a list of performance metrics, which should be used in benchmarking of controllers.

Evaluating or benchmarking the performance of a controller can be done either through
simulation/emulation or by using a hardware-based testbed. Although hardware testbeds provide
measurements that are closer to actual values in a production environment, their cost is significant
for the research community. Hence, emulation-based evaluations are common practice. Neverthe-
less, for benchmarking of SDN controllers, the software tool used has to be extremely efficient and

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:18 L. Zhu et al.

precise. In this section, we present some well-known tools available for benchmarking, followed
by analysis of their properties and benchmarking capabilities.

5.1 Existing Works and Lessons Learned

Prior to this article, numerous works [15, 26, 51, 87, 91, 92, 97, 98, 116, 131, 156, 159, 160, 169,
180, 209] used multiple techniques, tools, and testbeds to evaluate the performance of several SDN
controllers, including scalability, reliability, efficiency, and robustness.

In Table 6, we compile most of the existing works associated with the evaluation of the controller
performance and the notable findings. The majority of these works [97, 116, 156, 159, 160, 180, 209]
use CBench [163] to evaluate the performance based on latency and throughput. In most cases,
throughput mainly correlates with the threading capability of a controller; regarding the number
of flows, it can process in a specified time slot. Some other works [91, 92, 131, 160] extend CBench
to integrate support with the operating system’s kernel and compilers like Java and Python. The
aim is to improve the threading scalability of a controller regarding the system’s I/O modules. Some
works [87, 169] include simulation-based environments where hosts and vSwitches are virtualized
to evaluate the impact of topology on the performance of a controller. In these experiments, the
load balancing functionality is extensively tested. Moreover, the work of Shalimov et al. [160]
evaluates the reliability of the controller by generating vulnerable flows. Energy consumption has
been evaluated in other works [92, 116] using fat-tree or DC topologies. In the following, we give
a brief description of some of the notable works.

Tootoonchian et al. [180] present the CBench [163] tool for the evaluation of different con-
trollers. They perform multiple flow-based experiments using it to compare the effectiveness and
performance of NOX-MT, a multi-threaded adoption of the NOX controller with other controllers
like NOX, Beacon, and Maestro. Despite showing a notable improvement in performance, NOX-
MT fails to identify some of the limitations of NOX, such as massive utilization of dynamic memory
allocation and redundant representation of multiple requests.

Shah et al. [159] compare four multi-threaded controllers (NOX-MT, Floodlight, Beacon, and
Maestro) for architectural features like multi-core availability, controller impact on the OF switch,
packet batching, and task processing. The authors use CBench to compare these controllers based
on their throughput and latency performance. Beacon shows better performance in these two
scenarios due to its ability to use the multi-core and multi-threading functionalities. In addition,
the dynamic changing of packet sizes allows Maestro to perform better in the latency test.

Shalimov et al. [160] present a framework named HCprobe to compare seven different SDN con-
trollers: NOX, POX, Floodlight, Beacon, Ryu, MUL, and Maestro. To compare the effectiveness of
these controllers, the authors performed some additional measurements like scalability, reliability,
and security, along with latency and throughput. The testbed analysis presents some security vul-
nerabilities along with the reliability issues with MUL and Maestro controllers. However, Beacon,
MUL, and Floodlight obtained minimum latency, whereas Beacon performed relatively well in the
throughput test. The analytic hierarchy process method is used by Khondoker et al. [98] to ana-
lyze POX, Floodlight, ODL, Ryu, and Trema based on many standards like virtual switch support,
modularity, documentation, programming language compatibility, and availability of the user in-
terface. According to their calculation, Ryu was elected to be the most suitable controller based
on these properties. However, the analytic hierarchy process method is subjective and may lead to
different outcomes in different scenarios. Zhao et al. [209] use multi-core and many-core testbeds
to evaluate NOX, Maestro, Floodlight, and Beacon on the aspect of multi-core utilization efficiency,
performance scalability, and energy consumption regarding DC environments. The work empha-
sizes existing controllers’ limitations in taking advantage of the concurrency in modern hardware.
In the work of Salman et al. [156], the performance of well-known centralized and distributed SDN

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:19

Table 6. Comparative Analysis of Different Benchmarking Studies

Ref.
Testbed
Specifications

Evaluation Tool
Used

Controller(s)
Evaluated Evaluation Metrics

Optimization
Objectives Lessons Learned

[15]

3 testbeds,
3 servers with
Xeon E5-2.40 GHz,
32 GB of RAM.
2 NICs,
1 Gbps each.

CBench, Mininet ONOS, ODL

Throughput, topology
discovery time,
inter-controller traffic,
network downtime

Not specified

Regarding topology discovery time, ODL
takes 8x & 15x less than ONOS for 63 & 127
vSwitch, respectively.
In a single node, ONOS’s network
downtime remains lower with 1 second as
compared to ODL’s 5 seconds.

[26] Not specified
Mininet, Open
vSwitch, Traffic

Generator
POX & Floodlight

Round-trip delay.
Average throughput.

Not specified

Simple controllers are better suited for
configuration-related tasks.
Feature-based controllers are good for
performance-based tasks.

[51]

1 testbed, 3 servers
with Xeon E5-2.30
GHz, 256 GB of
RAM. 2 NICs, 1 &
10 Gbps.

CBench, YourKit ONOS, ODL

Latency, throughput,
memory usage, CPU
utilization, thread
scalability

Hyper-threading.
One-to-one
mapping on vCPU
& pCPU.

More than 8 vSwitches improve ONOS’s
throughput as opposed to ODL.
Task-batching improves latency for
multi-threaded controllers.
ONOS’s throughput decreases 13.5% in VM
versus a physical setup.

[87]
1 × quad-core, 1 ×
one octa-core
testbed

Mininet, Open &
Indigo vSwitch

POX
CPU utilization,
topology impact, ping
delay

Not specified

Number of switches impacts the flow
installation time.
Mininet utilizes maximum system memory.
Initial ping delay is larger than avg.

[91]

Single testbed with
4 servers (dual
core). 100-Mbps
link speed.

OFCBenchmark
NOX, Floodlight,
Maestro

Round-trip time.
Send & response rate.
Packet processing rate.

Implementation
boost libraries to
handle threads

Transmitting larger flows helps in detecting
congestion in networks.

[92] Not specified OFCProbe NOX & Floodlight
Impact of fat-tree topo.

Load balancing.

Java library used to
handle OF
connections

Topology impacts the flow processing time.
Efficient handling of switch depends on the
characteristic of the controller.

[97]
5 × server with
core i5 CPU

CBench Floodlight & ODL
Throughput, latency,
failure

Not specified
Custom profile is proposed for CBench.
Controllers may suffer from memory
leakages.

[98] Not specified
Analytic hierarchy

process
POX, Floodlight,
ODL, Ryu, Trema

vSwitch support,
modularity, docum.,
API compatibility.

Not specified
Evaluation method is subjective.
Testing process may affect the outcome.

[116]
1 × multi-Core, 1 ×
many-core testbed.
10-Gbps link speed.

CBench
NOX-MT,
Floodlight, Beacon,
Maestro

Latency, throughput,
energy consumption,
I/O threading impact

Floodlight learning
switch.
CBench delay
parameter.
Maestro config file
modification.

Number of switches & cores impacts
NOX-MT’s performance.
CPU types & system architecture impact
scalability.

[131] 2 Xeon testbeds OFCProbe ONOS

Topology discovery
time, path provision
time, ASYN. msg.
process time

Not specified

Number of links has equal impact as
number of switches regarding performance.
Reactive path provisioning time relies on
length of the corresponding path.

[156]
Single testbed with
octa-core CPU.
10-Gbps link speed.

CBench

NOX, POX,
Floodlight, ODL,
ONOS, Ryu, IRIS,
Beacon, Maestro

Latency, throughput Not specified
Controller’s SBI allows additional support
for future Internet architecture

[159]

1 × cluster with 2
separate Xeon
servers. 8 Gbps link
speed.

CBench
NOX-MT, Beacon,
Maestro, Floodlight

Throughput, latency,
threading scalability,
delay sensitivity

Switch
partitioning.
Packet batching.
Task batching.

Switch partitioning & switch batching
impact throughput.
Packet batching & task batching impact
delay sensitivity.

[160]
2 separate Xeon
servers. 10-Gbps
link speed.

CBench Hcprobe

NOX, POX,
Floodlight, Ryu,
Mul, Beacon,
Maestro

Throughput, latency,
reliability, security

Flow modification.
Customized
workload.

Scalability of controller depends on the
number of cores.
Not every controllers can handle a heavy
workload.

[169]
Dual-core virtual
testbed

Open vSwitch,
Cluster Testbed,

HTTP Generator,
REST Client

ODL, ONOS
Flow installation rate.
Flow reading rate.
Failover time.

Controllers
customized for the
WAN environment

Size of a cluster has impact on the flow
installation rate.
Failover time of a controller depends on the
number of devices.
Latency has significant impact on
large-scale WAN.

[180]
1 × quad-core & 1
× octa-core server.
2-Gbps link speed.

CBench
NOX, NOX-MT,
Beacon, Maestro

Throughput, latency
Batching I/O.
Boost Async I/O.

Number of switches impact the controller
performance

[209]
Single testbed with
quad-core Xeon
server

CBench, Open
vSwitch

NOX, POX,
Floodlight, Ryu,
Beacon

Throughput, latency,
threading capability

Python interpreter,
Hyper-threading.

HT offers performance improvement for
Java-based controllers.
Reliability, trustworthiness, usability, &
scalability should be considered equally.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:20 L. Zhu et al.

controllers is studied using CBench. The results show that both MUL and Libfluid MSG (written
in C) achieved the highest throughput under an increasing number of switches, whereas Python-
based Ryu and POX obtained better scores in the latency mode. However, with the increasing
number of threads, both Beacon and MUL performed better, whereas Python-based controllers
failed to show satisfying performance.

Two of the most widely implemented and adopted controllers(ONOS and ODL) are evaluated
against each other in the work of Bah et al. [15] regarding adaptation with the rapid changes in the
existed topology. The authors deployed single and cluster-oriented testbed scenarios using GEANT
topology to conduct experiments using the Mininet [121] emulation tool. ODL achieves a better
performance ratio in both of these environments in terms of detecting any possible changes in the
topology compared to ONOS. ONOS outperforms ODL due to precise backup and recovery mod-
ules on the underlying controller architecture in terms of any obstacles or failure in the network.
Using the same two controllers mentioned earlier, Darianian et al. [51] did performance evaluation
in both physical and virtual scenarios in terms of latency, throughput, and thread scalability using
CBench. OpenStack Kilo [173] is deployed to build the virtualized testing environment. Based on
the evaluation of the physical and virtual environment, ONOS outperforms ODL in terms of la-
tency and throughput due to ONOS’s better adaptability with thread and socket processing with
the provided hardware. The focus of this study is more on the threading and processing capabilities
of the controllers.

5.2 Benchmarking Tools

The following are some of the commonly used tools for benchmarking. Table 7 provides a com-
parative analysis of the three main tools used for evaluation in this work.

CBench [163] is one of the fundamental benchmarking tools with an open source license. It
is designed explicitly for evaluating the performance of OF SDN controllers, which support OF
1.0 and 1.3. However, due to compatibility limitations, controllers with OF 1.3 may experience
performance issues. There are two basic evaluation metrics in CBench: latency and throughput.
Regarding the latency measurement, the vSwitch forwards a single packet_in message toward the
controller and waits for a response. Tests can be repeated several times to obtain the average
performance. The total number of acknowledgments obtained in a test period is used to compute
the average latency. As for throughput measurement, each vSwitch continuously sends as many
packet_in messages as possible to estimate the capability of the controller.

HCprobe [160] is an open source extension of CBench, developed with the combination of
Python and Shell scripts, to provide additional performance evaluation capabilities, such as re-
liability and scalability. The emulated switch can send vulnerable OF messages to controllers to
check for resiliency and trustability. In addition, the test engine utilizes a Linux kernel, which al-
lows customizable and scalable tuning of CPU threading. As a result, the tester can obtain more
accurate performance statistics of an SDN controller.

Hvbench [48, 165] is an open source benchmarking tool designed for benchmarking hypervisors
in a distributed SDN-based infrastructure. This tool can be used as container-based instances for
multiple SDN controllers and data plane devices. The availability of various workload scenarios
allows Hvbench to achieve horizontal and scalable performance evaluations of the SDN hypervi-
sors. The tool has a few limitations. First, it relies upon the initialization of hypervisor. Therefore,
it is not designed for physical SDN infrastructure. Second, the evaluation process depends on the
pre-configured distribution of inter-arrival OF traffic. As a result, the tool does not support other
customized or modified packet types for traffic flows.

OFCBenchmark [91] is built using C++ and Boost libraries to address some of the limitations
of CBench. The components of this benchmarking tool include a graphical dashboard (built with

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:21

Table 7. Comparison of Benchmarking Tools

Tool Advantages Limitations
Built

on License Availability
User

Interface

CBench [163]
Faster analysis execution.
Platform independent.
Source code is available.

vSwitches limited to 256.
Supports only OF 1.0.
Flow length is limited.
Supports only IP-based traffic.

C
Open
source

Yes CLI

HCprobe
[56, 160]

Haskell-based build allows API for custom
benchmarking.
Initiate malformed OF messages to test
vulnerability detection.
Workload stress testing for controllers.

More like an update to
CBench only in terms of
features.
Compatibility issues with
recent controllers (ONOS,
ODL).

Haskell
Open
source

Yes CLI

Hvbench
[48, 165]

Supports multi-tenancy.
Container-based instances.
Lower CPU consumption.
Pre-defined distribution.
Dynamic workload scenarios.

Functional for
hypervisor-based
environment only

C++
Open
source

Yes
CLI

Web UI

OFCbenchmark
[91]

Load-balancing evaluation.
Container-based instances.
Lower CPU consumption.
Visual stats representation.
Specific packet auditing.

Lacks support for ONOS,
ODL, & recent controllers

C++ &
Delphi

Proprietary On request
CLI
GUI

OFCProbe
[72, 92]

Hassle-free communication between
controller & testing system.
Immediate request processing.
Best-effort distribution.
Cross-platform support.
Well documented.

Heavy memory & CPU usage
due to implementation details

Java
Open
source

Yes CLI

OFBench [112]

Designed for data plane benchmarking.
Supports generic hardware.
Automated test engine based on
controller-agent.

Does not support control
plane benchmarking.
Accuracy depends on
controller’s stability.

N/A Proprietary Yes
CLI

Web UI

OFNet [161]

In-depth performance analysis.
Self-defined topology.
Various traffic profiles.
Flow event syntax.

Traffic generator &
benchmarks rely on topology.
Slower test duration.

C Proprietary On request GUI

Perfbench
[10, 31]

Emulates large OF flows.
Works on virtualized & non-virtualized
scenarios.
Pre-defined & custom distribution.
High-throughput workload support
(i.e., DCs).
Control & data plane benchmarking.

Virtualization may lead to
control plane interference

C++
Open
source

Yes CLI

PktBlaster [186]

1,000 emulated switches.
Customized switch groups.
Detailed statistical results.
Accuracy is better than CBench.

No customized topology.
No application-based traffic.
Free edition lacks deep
analysis.

N/A Proprietary Onrequest Web UI

WCbench [67,
68]

Automated evaluation process.
Behaves like CBench wrapper.
Easy on CPU & memory.
Virtualized instances can be executed
through Vagrant [80].

Built on the top of CBench.
Only supports specific ODL
versions.
Depends on SSH connection.

Python
Open
source

Yes CLI

Delphi) and a virtualized scalable vSwitch, which is the core module and includes a client that can
administer evaluation tests. The tool offers distributed benchmarking by allowing clients to run
in multiple instances and offers extensible benchmarking such as RTT, flow installation rate, and
CPU utilization.

OFCProbe [72] is an upgraded version of OFCBenchmark, which concentrates on maximizing
the flexibility of SDN controllers by emulating a significant amount of OF switches in a large-
scale environment. It is redesigned using Java to make it a platform-independent tool and also to

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:22 L. Zhu et al.

overcome the virtualization overhead caused by an SDN emulation tool like Mininet [121]. The
tool analyzes the impact of the network topology during the evaluation executed by the client
component.

OFNet [161] is a combined approach to integrate OF network emulation with performance mon-
itoring and visual debugging of SDN controllers. OFNet can be deployed in a system to generate
different types of topologies. The inbuilt traffic generator produces different types of network
traffic. It is capable of measuring performance characteristics of the controller, such as flow gen-
erations, flow failures, CPU utilization, flow table entries, average RTT, and the latency of flow
setup.

Perfbench [10, 31] is another performance evaluation tool that is developed using the libfluid C++
library [187] to initiate precise, scalable, and high-performance-oriented evaluation for both vir-
tualized and non-virtualized OF-dependent SDN operations. In addition, this tool can be exploited
for both controller-based or switch-based performance evaluation in a multi-tenant hypervisor
environment. The versatile feature sets allow Perfbench to support compatibility for both OF 1.0
and 1.3 versions and can generate multiple types of OF packets such as packet_in, packet_out,
echo_request, echo_reply, feature_request, feature_reply, flow_mode, and port_stats messages.

PktBlaster [186] is a unified test solution that emulates large-scale SDN networks, including
network infrastructure and orchestration layers of SDN controllers. The free version with limited
capabilities offers features such as latency and throughput measurement with different testing
profiles (i.e., TCP, UDP, ARP_Request, and ARP_Reply.) A throughput test determines the rate at
which the controller configures the flows in the switches. The latency test gives the exact time in
milliseconds, which the controller takes to process flow in the switch. Although the free version is
limited to 16 switches and 64 MAC addresses, it offers additional properties like flow tables, group
tables, meter tables, size of the switch buffer, and maximum entries per flow table.

WCBench [67, 68] is another variant of CBench written in Python and utilizes the core library
module of CBench. Compared to CBench, the feature set of this tool goes beyond latency and
throughput and offers additional aspects of automated evaluation with detailed and graphical sta-
tistics. Although it extends the support of OF to version 1.3, the compatibility of WCBench is still
limited to specific versions of the ODL controller.

5.3 Benchmarking Metrics and Their Impact

In this section, we present a detailed list of performance metrics that can be used to benchmark
SDN controllers. Table 8 outlines the grouping and description of each of these metrics. Some
of these have also been identified by Vengainathan et al. [185]. However, we have extended this
list and grouped them to eliminate the confusion regarding terminology. Generic terms, such as
throughput and latency, can have significantly different meanings depending on the measurement
process. Additionally, there can be other metrics to evaluate a controller, such as security and
reliability. However, we refer to them as non-measurable parameters that are more subjective. We
leave their classification as future work. The measurable parameters are grouped as follows.

Throughput metrics. Throughput is usually measured as a rate for processing flow requests by
the controller. The vital thing to note is that it is not the flow installation time (path provisioning).
From the test tools perspective, it is the number of packet_in messages sent, and the correspond-
ing packet_out messages received per unit time. These requests could be synchronous or asyn-
chronously coming from the vSwitches in a real environment. As a result, we consider parameters
such as the processing rate of asynchronous and synchronous messages along with transmission
rate for send and response messages to determine the throughput of the controller.

Latency metrics. This group of metrics is measured in time units. Similar to throughput, it only
deals with the time between packets sent to controller and response received at the vSwitch. Many

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:23

Table 8. Classification of Benchmarking Metrics and Tool Capabilities

Measurable Metrics Description Benchmarking Tools

Group Parameters CBench PktBlaster OFNet

Throughput

Async message processingrate
Determines number of flow requests a controller
can process per unit time. A processed request
does not mean a successfully installed flow.

✓ ✓ ❍

Sync message processing rate ✓ ✓ ❍

Send & response rate ✕ ❍ ✓

Latency

Async message processing time
Denotes the delay or time duration between
request from the vSwitch & response received
back

✓ ✓ ✓

Sync message processing time ✓ ✓ ✓

Round-trip time ✕ ❍ ✓

Flow related

Path provision time
(proactive/reactive)

Determines efficiency of a controller to install
flows, or measures that include communication
between a source & destination

✕ ✓ ✓

Path provision rate
(proactive/reactive)

✕ ✓ ❍

Flow reading rate ✕ ✕ ❍

Flow installation time ✓ ✓ ✓

Load balancing ✕ ❍ ✕

Topology
Topology discovery time/size Measures SBI performance, detects topology-type,

& monitors changes on the topology

✕ ✓ ✓

Topology change time ✕ ✓ ✓

Threading

Thread capability

Indicates the utilization efficiency of a controller
regarding the OS & physical hardware resources

✓ ✓ ✓

I/O impact ✓ ✓ ✕

Control session capability ✕ ❍ ✕

vSwitch CPU utilization ✕ ✕ ✓

Others

Forwarding table capacity

Miscellaneous parameters that can be measured
for specific scenarios

✕ ✓ ✕

Ping delay time ✕ ✕ ✕

Energy consumption ✕ ✕ ✕

Network provision time ✕ ✕ ✕

Controller failover time ✕ ❍ ✕

factors can affect the latency of a controller, including computation time required by the controller
and link delay. Therefore, parameters like RTT and processing duration for asynchronous and
synchronous messages are evaluated under latency experiments.

Flow-related metrics. These metrics deal with the complete path provisioning and flow instal-
lation. The primary difference between this and throughput is the complete path. Throughput
only measures the rate from vSwitch to the controller and back to vSwitch. However, complete
flow installation requires the installation of flow entries at other vSwitches along the path. We ac-
knowledge multiple parameters in this group, such as provision rate and time for installing either
proactive or reactive path, flow interpretation rate, and overall load balancing capability of the
controller.

Topology -based metrics. The ability to detect or determine a topology including its type (single,
linear, overlay, and tree), size, and the number of integrated nodes altogether represents a vital
aspect of evaluating the efficiency of a controller. Interaction with its SBI also plays a significant
role in these metrics. As a result, topology-based performance benchmarking includes the size of
the topology and detection time regarding multiple variants of testbed topologies.

Threading and session metrics. This set of metrics identifies controller competence for utilizing
the system architecture, hardware capabilities, and I/O units. Optimization of thread-based capa-
bilities like multi-threading offers several advantages of task batching, event scheduling, process
flows as groups, and, most importantly, increases the controller’s flow processing time and rate.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:24 L. Zhu et al.

Parameters such as CPU usage for running vSwitch instances, I/O batch processing, thread capa-
bilities of the provided hardware, and control session efficiency are taken into consideration in
this category.

Miscellaneous metrics. Here we group other parameters that can also be used for evaluating the
controllers. Some of these can be crucial in specialized scenarios, such as energy consumption in
mobile environments where controllers are deployed on energy-constrained devices. Similarly, in
situations where hardware failure is a concern, the failover time needs to be reduced so that backup
controllers can take over as quickly as possible. Therefore, in this portion, we group parameters
such as controller failover time, energy consumption, ping delay time, forwarding table capacity,
and network provisioning time. A controller with some knowledge of these metrics (or the network
administrator) can lead to a more optimized managed network.

6 QUANTITATIVE EVALUATION AND BENCHMARKING OF CONTROLLERS

This section discusses the performance of 9 different controllers using previously described bench-
marking tools. To the best of our knowledge, no previous work has compared such a large num-
ber of controllers and performed cross comparison using different tools for different metrics. The
controllers evaluated are Nox-Verity, POX, Floodlight, ODL, ONOS, Ryu, OpenMUL, Beacon, and
Maestro. The reason to select these out of previously discussed 34 controllers is (1) availability
of controller source code, (2) compatibility with current Linux distributions, (3) interface-ability
with the benchmarking tools, and (4) interest of the community. By observing the controllers used
for specialized networks in earlier sections, it can be deduced that many of the new proposals are
based on the controllers mentioned previously. Hence, providing a baseline for comparison will
be beneficial to the community.

6.1 Evaluation Setup

The evaluation has been done in a partially emulated environment. The controller runs on a native
Linux 16.04.03 LTS system, with an i5-9400F 2.9-GHz processor, 16 GB of DDR4 RAM, and solid-
state NVMe m.2 interface storage. The tools and virtualized testbed environment run on a separate
3.4-GHz i7-6700 processor with 16 GB of DDR4 RAM and SATA interface solid-state memory. Note
that the virtual environment has 12 GB of RAM allocation and two of the cores from the processor.
The systems are linked with 1-Gbps links through a dedicated gigabit switch, whereas the virtual
links in the virtualized domain are also 1 Gbps. Note that the capacity of links is not a bottleneck
in the evaluation process.

In this work, we use three of the tools (i.e., CBench, PktBlaster, and OFNet) to evaluate different
controllers. It is important to note that none of the tools available can measure all performance
statistics and do not measure the same metric in the same manner. In most of the previous works
and the output of tools, the metrics are somewhat simplified. For example, the throughput of a
controller can be interpreted in several ways. Similarly, as shown in Table 8, the latency can be
determined using different metrics. The columns on the right side of the table show each metric
that can be directly measured, indirectly measured, or not measurable by a specific tool. Hence,
we have tried to the best possible extent to make them similar. However, once the parameters are
set, all controllers use the same values, as shown in Table 9. It is important to note that all tools
and controllers are running on the same platform and hardware; hence, there is no platform bias.
Furthermore, the reproducibility of the results has been ensured by testing the VMs on different
hardware, whereas the operating system has been kept the same. We have observed similar trends
for the results in these experiments.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:25

Table 9. General Evaluation Parameters

Parameter Specifications

Number of switches 2–128
Link speed 1 Gbps
Number of worker threads 4 (for controller)
Number of available CPU cores 4 (for controller)
Number of test iterations (confidence interval) 20 (Avg. results are plotted)
Number of unique hosts perswitch 64
Duration between each iteration 5 seconds (where applicable)
Single test duration 300 seconds
Traffic profile UDP (TCP for PktBlaster)
Flow measured by Packet-In, Packet-Out, Flow-Mod
Packet length ∼ 64 bytes
Flow transmission rate 250 flows per second
Topology type Fat-tree

Fig. 4. Latency performance with varying number of switches. (a) CBench. (b) PktBlaster. (c) OFNet.

6.2 Latency Performance

The latency performance of a controller is generally measured as the time required for flow in-
stallation. More precisely, it is the time between the packet_in message sent and the packet_out

message received at the switch. Figure 4 depicts the measured latency by each of the tools, for the
nine different controllers evaluated, against the increasing number of switches in the topology.

In Figure 4(a), it can be observed that the performance of all controllers follows a similar trend;
however, at a higher number of switches, the increase in latency for Nox-Verity, POX, and Ryu is
not as steep as the rest of the controllers. It is important to note that the performance is relative
to the hardware setup; hence, on more high-capacity systems, the performance will be better. The
rapid increase in installation time is experienced around the 16–32 switches mark. Here, Nox-
Verity, POX, and Ryu experience an 160% increase between 32 and 128 switches, whereas the
rest experience an approximate 180% increase. Figure 4(b) shows the flow installation time for
PktBlaster, and we see a similar trend as in the case of CBench. The increase is more drastic around
the 32 switches mark. ONOS, Floodlight, and ODL tend to have higher (approximately 5–15 ms
higher) installation times as compared to other controllers. In the third evaluation in Figure 4(c),
we show the flow measurements from OFNet. It is important to highlight that the direct results
from OFNet are reported against time and hence requires individual simulations for the different

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:26 L. Zhu et al.

Fig. 5. Throughput performance measured against number of switches. (a) CBench. (b) PktBlaster.

number of switches. It can be observed that the performance in terms of better flow installation is
of POX, Ryu, and Nox-Verity, whereas ONOS, Floodlight, and ODL take significantly more time in
installing the flows (in order of 100 s of milliseconds). Here the difference is approximately 190%
between the two groups. However, the increase does not reflect any drastic change as the number
of switches increases.

One of the contributions of this article is to demonstrate the difference in outcome for the same
metric under similar emulation and test environments for different tools. As can be seen from
Figure 4, the y-axis scale varies extensively for all three tools. For CBench, the measured latency
is in the orders 100 s of milliseconds but capping at 350 ms in the given scenarios, whereas in Pkt-
Blaster, the same controllers are observed to perform in 10 s of milliseconds, and in total contrast,
the evaluation for OFNet is much higher. This difference can be attributed to the way measure-
ments are done, the load on the controller, and the implementation of the controller. The measure-
ment and metrics have been discussed in the earlier sections and in Tables 7 and 8. The load on
all controllers is modeled to be identical, but as described earlier, the different tools generate this
load in different ways. CBench is more sequential in generating the packets, whereas PktBlaster
is parallel in nature. Hence, the actual load on the controller may vary. Similarly, the controller
coding and implementation may also introduce processing delays with different degrees; however,
it is difficult to dissect the coding of the tools or the controllers to pinpoint the heavy processing
points. The second cross-analysis observation is the growth factor of different controller times. In
Figure 4(a) and (b), we observe that the time increases exponentially, whereas in the evaluation of
OFNet, this increase is smooth.

6.3 Throughput Performance

The throughput performance metric is measured using CBench and PktBlaster only, as shown in
Figure 5. OFNet does not provide a direct measurement of flow processing. However, an indirect
estimation can be done through sent and received OF messages, which are discussed in a sepa-
rate section. Similar to the latency evaluation, this metric is also evaluated against the increasing
number of switches in the topology.

In throughput mode, CBench switches send multiple packets at once without waiting for in-
dividual replies (opposite to the latency calculation mechanics). Figure 5(a) shows the results ob-
tained from CBench. It can be observed that Nox-Verity, POX, and Ryu remain the lowest per-
formers, whereas controllers like ODL, Floodlight, and ONOS perform significantly better. The
difference is approximately 142% on average between these two groups. The general observation
of a rapid increase in throughput is due to the number of hosts connected to each switch (which
is modeled through the number of flows per second created at each switch as shown in Table 9).
Hence, the traffic flow requests quickly amplify to a point after which no significant increase in

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:27

Fig. 6. RTT by OFNet. (a) Avgerage RTT against time (8 switches). (b) Average RTT against switches.

throughput is observed given the testbed setup. In Figure 5(b), the performance of PktBlaster can be
observed. The performance of Floodlight, ODL, and ONOS is the best among all controllers com-
pared, whereas Nox-Verity and POX are at the lower end. Here the difference is approximately
250% among these two groups. The increase in the number of switches increases the flow_in mes-
sages, and the throughout lines become flat around the 8 switches mark on average.

Similar to the earlier analysis, the tools differ in the throughput metric as well; however, the
change is not too drastic. All controllers tend to perform better in PktBlaster evaluations as com-
pared to CBench, in the order of 10 s of flows per second. Specifically, ODL and Floodlight show
significant gains in performance. The peak performance in PktBlaster is approximately 200 flows
per second higher on average for the top contenders. However, this should not be interpreted as an
improvement in controller performance but rather is a measurement artifact of the benchmarking
tool. The important point to note is that comparing results across different tools is not a good anal-
ysis practice. At the same time, one fact that does stand out is the commonality in the flattening
of curve at the 8 switches mark, which is observed in both graphs in Figure 5.

6.4 OFNet Specific Measurements

In this set of experiments, we focus specifically on the performance metrics offered by OFNet. It is
important to note that this work only focuses on the metrics reported directly by the benchmarking
tools. Although OFNet reports several metrics, in the interest of space we only show the RTT and
OF messages sent/received.

6.4.1 Average RTT. RTT evaluation is a crucial factor to consider when identifying the location
of controller deployment. It identifies the communication delay between the controller and the
switch. If the controller and switches are physically far apart, the increased RTT will contribute
to increased latency. Similarly, the time complexity of packet processing at the controller affects
the overall performance. Note that the RTT measurements in OFNet are not flow-installation time.
We have run multiple experiments to determine the average RTT against a different number of
switches in the topology, and we also show the results against time for 8 switches specifically
as a sample. Remember that OFNet reports the measurements against time, and average calcula-
tions have to be done manually to plot against the number of switches as shown in Figure 6 (log
scale). Based on the tree topology, Figure 6(a) shows that ONOS has high RTT in the range of 408
to 985 ms; however, it remains stable for the duration of the simulation. Yet Ryu and OpenMUL
(minimum 2.04 ms and maximum 3.19 ms) have the least RTTs, mostly because of less complex
algorithms involved at the controller. However, less complexity does not translate to better com-
plexity; instead, they may be attributed to fewer controller capabilities. In Figure 6(b), the RTT is
plotted against the number of switches. Note that the scale is in a log; hence, the slope of the line

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:28 L. Zhu et al.

Fig. 7. OFNet Flow measurements. (a) Sent OF messages by switches. (b) Received OF messages by switches.

in some controller cases shows a significant increase in RTT. An interesting observation here is
that RTT is not the flow installation time; hence, the increase in RTT is most probably due to the
topology and load on the links, with some contribution in the form of controller processing.

6.4.2 OF Messages Sent and Received. OFNet measures several parameters, out of which these
two are of significant importance, as it indicates the amount of control overhead required to main-
tain the flow entries and the flows themselves. It can also be used as a crude indicator of flows
per second. The number of OF messages sent to the controller are loosely the packet_in messages
by the switches for path establishment, whereas the received OF messages from the controller at
switches are packet_out and packet_mod messages. In Figure 7, we measure these against the in-
creasing number of switches in the topology. Intuitively, it can be observed that the increase in
the number of switches also increases the number of OF messages generated by them, whereas
the number of received messages is higher than the requests. However, the smoothness of lines
is due to the high confidence interval as described earlier. In Figure 7(a), we observe that the sent
OF messages are higher for ODL, ONOS, and Floodlight as compared to the rest of the controllers.
The difference is, on average, 402 messages per second. We also observe a minor tapering off at
128 switches for these three controllers. We have not found any anomaly in the data and therefore
attribute it to the physical limitations of the testbed. This is also corroborated with the fact that
beyond 128 switches, the testbed does exhibit abnormal behavior, which is the main reason that
all experiments have been limited to 128 switches. In Figure 7(b), we observe that more (approx-
imately 25%) messages are sent back from the controller to switches in the case of ODL, ONOS,
and Floodlight. As compared to the Nox-Verity, POX, and Ryu group, it is three times the rate at
128 switches. Note that these are per-second averages of messages.

6.5 Performance Analysis of Specialized Networks

In this section, we present a comparative analysis of the performance of different controllers (and
control plane solutions) for specialized networks (i.e., IoT, WSNs, and VANETs). Several points
should be noted in this quantitative performance analysis. First, a detailed comparative analysis
of these controllers has already been discussed in the article (Sections 4.2, 4.4, and 4.5); hence,
here we only focus on the quantitative performance. Second, this section does not implement the
solutions, as most of them do not have any public code available. Therefore, we only elaborate on
those works that have provided the implementation information to some extent,. Third, we have
not discussed any of the blockchain solutions (Section 4.3) here, as none of the proposed systems
have implementations available.

Controller/control plane for IoT. It can be observed in Table 2 that only some works [43, 100, 203,
204] have given details of implementation; hence, only these solutions are discussed here. Note
that the discussion is based on the results provided by the source articles, as replication of the

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:29

Table 10. Quantitative Performance Analysis of Controllers/Control Planes for Specialized Networks

Ref. Solution Testbed Performance Metrics (only relevant ones reported here) Remarks

IoT Networks (Reference Table 2)

[43]
SDC on

micro-controllers
HW V

CPU Utilization: Ryu: Same requirement as without
micro-controllers (maximum 27%). ODL: Majority (70%) of
controllers need 17% CPU; rest go up to 50% CPU. Zero: Majority
(60%) required <5% CPU, whereas max is <30%.
Memory Consumption: Ryu & Zero: Similar (between 200 MB
and <900 MB). ODL: Majority (60%) require 600 MB to 1 GB.
Flow Setup Time (Ping, RTT): Aloe: Best case (200–500 ms);
worst case (300–700 ms). BLAC: Best case (110–300 ms); worst case
(580–900 ms). Link failure determines the best or worst case.

ONOS failed due to
memory requirement.
Zero [101] works better
for Aloe.

[100]
Security

framework for IoT
HW E

Throughput: 100% increase in throughput against NOX-MT
(164.9K vs. 79K req./second).
Latency: 34.4% reduction in latency against NOX-MT
(0.8 vs. 1.22 ms).

Performance attributed to
highly parallel event
handler

[203]
[204]

Security
framework for IoT

HW V
No comparison to other controllers. Self-comparison shows that it
utilizes 100% CPU for its policy operations.

Minor assessments shown

Vehicular Networks (Reference Table 4)

[44]
SDN core for 5G

VANET
S

Avg. End-to-End Delay: Increasing distributed controllers show a
20% to 40% delay reduction (ms).
Request Handling Latency: With SDN-based 5G slicing, the
request handling latency drops to <1 ms, even with an increasing
number of requests.

Primary comparison
against non-SDN system

[154] SDN-based VANET HW E
Tx Speed and Delay (AP to Controller): Suggests that
concurrent APs decreases Tx speed in backbone (order of 10s of
Megabits per sec), but the RTT/delay is not affected.

Minor self-benchmarking

[192]
Delay-constrained
routing in VANET

S Delivery Ratio: No cross comparison to other solutions.
Bandwidth Efficiency: No cross comparison to other solutions.

Self-assessment with
different routing
strategies

Wireless Sensor Networks (Reference Table 5)

[7, 8, 73]
SDN-WISE
SD-WISE

HW

RTT (Self Micro-Benchmark): RTT increases by approx. 50%
between 3 and 5 hops for different topologies. Increasing payload
(by 10 bytes) increases RTT marginally.
Efficiency—Control to Payload (Self Micro-Benchmark):
Higher payloads increase efficiency (from 25% to 65% efficiency
between 10- and 100-byte payloads).

SDN-WISE is a major
solution in WSN

[128] Mgt. services HW

Packet Delivery Rate and Delay: Compared to IT-SDN*: 4% to 8%
gain.
Energy and Computation: Compared to SDN-WISE: <1%
improvement shown.
Topology Variation: Compared to SDN-WISE 95% reduction in
control packets, and 10x reduction in delay (ms) is claimed.

Solution is built on top of
IT-SDN,* which is built on
SD-WSN [7]

[172]
Clustering

Topology mgt.
S

Control Message Overhead: Claims improvement, but unit of ‘J’
is not clear.
Packet Loss Rate: Compared to SDN-WISE 1% improvement in
packet loss rate.
End-to-Endd Delay: Depending on QoS better and worse against
SDN-WISE.

No significant
improvement against
SDN-WISE observed

E, emulation; HW, hardware based; S, simulation; V, virtual testbed.
*No verifiable reference available.

results has not been possible. Chattopadhyay et al. [43] present a software-defined service (SDC)
for IoT devices (Aloe), which is tested on hardware and then in a virtual environment. The SDC
requires distributed micro-controllers in the topology, and the authors present interesting results
by comparing different controllers, as shown in the Table 10. The CPU utilization of Zero controller
[101, 104] was far less than the ODL, which is intuitive given the complexity and capabilities of
ODL. However, their results also show that Ryu’s CPU requirement was similar to having no
micro-controllers, which is odd. They also show several other metrics, but we present the flow
setup time, which is measured using Ping; hence, it is basic RTT. This is compared to another SDC

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:30 L. Zhu et al.

called BLAC [84]. Kim et al. [100] present a security framework with a custom-built controller
based on Brista [126, 127] and show throughput and latency against NOX-MT. Given the hardware
setup, the proposal has a 100% increase in throughput and 34.4% less latency. Cumulatively, these
works also claim to be better than the majority of controllers (except ODL) for IoT needs. The work
of Zarca et al. [203, 204] performs no comparison to any controller and also shows itself utilizing
100% CPU.

Controllers for VANETs. For VANETs, the solutions presented in other works [44, 154, 192] de-
scribe some algorithms and implementation details as part of the work. Hence, in Table 10, we
summarize their performance. It is interesting to note that although these solutions modify con-
trollers, none of them actually presents a performance from a controller’s perspective. Most of
these are minor self-assessments, without any comparative analysis to other solutions.

Controllers for WSNs. WSNs have been researched for many years now and have significantly
matured. The integration of SDN into WSN is also not new, but still there is a major lack of
controllers in this hybrid domain. SDN-WISE [73] is perhaps the only contender as a controller,
whereas its comparison to other lightweight controllers is still missing. In Table 10, we provide
two other solutions [128, 172] that present implementation details. Similar to the problem iden-
tified in VANETs, cross comparisons are very limited. Ndiaye et al. [128] show a comparison to
SDN-WISE, but no significant improvement in performance is observed.

7 RESEARCH FINDINGS AND CONCLUSION

Analyzing and benchmarking the performance of a controller is a challenging task. This work
presents a systematic and comprehensive analysis of general and specialized controllers. We
first qualitatively compare 34 controllers and then discuss different design choices, where multi-
threading and distributed nature of controllers are the most effective ones. There are two main
findings. First, the majority of the controllers proposed in the literature have no implementation
available, and the details available are not sufficient for the third person to code it. Hence, other
than theoretical comparison, it is not possible to evaluate them. Second, some of the controllers
that do have public implementations available are not maintained or are very rudimentary in na-
ture. For example, some works use initial (years old) implementations of POX, NOX, and ONOS,
which inherit the limitations of older code (software aging problems), thus impacting the reliability
(and repeatability) of the performance shown.

Controllers have been specialized in two ways. One is to improve specific functions of the con-
troller, such as monitoring, orchestration, and load balancing, whereas the second is to specialize it
for a specific network/use case. We present an analysis from both perspectives. First, the majority
of modern networks such as IoT and VANETS still utilize the same controller structures that were
developed for wired infrastructure. Very few new models have been designed from scratch that
are targeted for the specialized nature of the network. Second, the availability of implementations
of these designs is scarce, which is a major challenge in evaluation and enhancement. Although
many of these claim to have been tested on physical networks, without precise implementation
details, their usage, repeatability, and enhancement is not possible.

This work also discusses in detail the existing benchmarking studies, the lessons learned, and the
metrics used for evaluation. Based on this, we have categorized and defined several benchmark-
ing metrics. An important factor in performance analysis is the tool used for evaluation; hence,
we have identified 10 different tools and comprehensively compared their capabilities. First, we
noticed that some of the available features of tools, such as packet length and vSwitch buffer size,
impact the performance of the controller. However, it is important to note that the outputs given
by any tool also indicate the performance of components used in complete topology. Isolating the
performance of the controller from the results is not possible. Second, the coding imperfections

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:31

of tools and measurement processes have to be considered while comparing any solutions. The
evaluations presented in research works that do not use any specific benchmarking tool cannot be
corroborated with evaluation using a benchmarking tool. This is mostly in those cases where the
parameters/metrics are improperly defined. For example, RTT (via ping) is presented as controller
latency. Third, utilization of benchmarking tools like OFNet allows the definition of custom topolo-
gies with a variety of traffic profiles. Hence, picking the correct tool and topology is as important
as defining metrics to be measured.

Finally, this work presents a quantitative evaluation of nine controllers using three different
tools for several metrics. Based on the qualitative and quantitative analysis, we determine that
some controllers, such as ODL and ONOS, have better flow installation rates at the cost of higher
latency. First, considering latency and throughput, multi-threaded controllers, including central-
ized ones (Floodlight, OpenMul, Beacon, Maestro) and distributed ones (ODL and ONOS), perform
significantly better than centralized and single-threaded controllers like POX and Ryu. However,
they also require more physical resources to perform efficiently. Moreover, a single-threaded cen-
tralized controller can still perform better in simplified topologies, whereas multi-threaded con-
trollers are more suitable for complex environments. Second, placement of the controller in phys-
ical topology directly impacts several performance parameters. This work has not explored this
direction; however, topology-specific controller placement experiments would be interesting fu-
ture work, especially for specialized networks. Third, quantitative performance evaluation of spe-
cialized network controllers is a big challenge. With the current lack of publicly available code for
these solutions, these works are neither repeatable/reproducible nor they can be enhanced further
by the research community.

Although there are no clear winners in wired, wireless, general, or specialized networks, the
final message is to ensure that the modern controller design has to be specialized for the target
network and must be evaluated and an appropriate tool designed for the specific environment
with the best possible implementation of the controller itself. This holds specifically for drone and
aerial vehicular networks.

REFERENCES

[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. 2010. Hedera:
Dynamic flow scheduling for data center networks. In Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI’10). 281–296.
[2] Saba Al-Rubaye, Ekhlas Kadhum, Qiang Ni, and Alagan Anpalagan. 2019. Industrial Internet of Things driven by

SDN platform for smart grid resiliency. IEEE Internet of Things Journal 6, 1 (Feb. 2019), 267–277.
[3] Iqbal Alam, Kashif Sharif, Fan Li, Zohaib Latif, M. M. Karim, Sujit Biswas, Boubakr Nour, and Yu Wang. 2020. A

survey of network virtualization techniques for Internet of Things using SDN and NFV. ACM Computing Surveys

53, 2 (July 2020), Article 35, 40 pages.
[4] Ozgu Alay, Andra Lutu, Rafael Garcia, Miguel Peon-Quiros, Vincenzo Mancuso, Thomas Hirsch, Tobias Dely, et al.

2016. Measuring and assessing mobile broadband networks with MONROE. In Proceedings of the IEEE 17th Inter-

national Symposium on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM’16). IEEE, Los Alamitos,
CA.

[5] Mohannad Alharthi, Abd-Elhamid M. Taha, and Hossam S. Hassanein. 2019. An architecture for software defined
drone networks. In Proceedings of the IEEE International Conference on Communications (ICC’19). IEEE, Los Alamitos,
CA.

[6] Ricardo S. Alonso, Inés Sittón-Candanedo, Sara Rodríguez-González, Óscar García, and Javier Prieto. 2019. A sur-
vey on software-defined networks and edge computing over IoT. In Proceedings of the International Conference on

Practical Applications of Agents and Multi-Agent Systems. 289–301.
[7] Angelos-Christos Anadiotis, Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio Palazzo. 2019. SD-

WISE: A software-defined WIreless SEnsor network. Computer Networks 159 (Aug. 2019), 84–95.
[8] Angelos-Christos G. Anadiotis, Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio Palazzo. 2015.

Towards a software-defined network operating system for the IoT. In Proceedings of the IEEE 2nd World Forum on

IoT. 579–584.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

133:32 L. Zhu et al.

[9] ANASTACIA Consortium. 2019. ANASTACIA: Advanced Networked Agents for Security and Trust Assessment in
CPS/IOT Architectures. Retrieved May 14, 2020 from http://www.anastacia-h2020.eu/.

[10] Andreas Blenk. 2018. Perfbench Github Repository. Retrieved May 21, 2020 from https://github.com/tum-lkn/
perfbench.

[11] Atlassian. 2016. Floodlight Controller. Retrieved May 12, 2020 from https://floodlight.atlassian.net/wiki/spaces/
floodlightcontroller/pages/1343542/Getting+Started.

[12] Luigi Atzori, Jose Bellido, Raffaele Bolla, Giacomo Genovese, Antonio Iera, Antonio Jara, C. Lombardo, and G. Mora-
bito. 2019. SDN&NFV contribution to IoT objects virtualization. Computer Networks 149 (Feb. 2019), 200–212.

[13] Gagangeet Singh Aujla, Neeraj Kumar, Sahil Garg, Kuljeet Kaur, and Rajiv Ranjan. 2019. EDCSuS: Sustainable edge
data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on Sustainable Computing. Epub
Ahead of Print. March 25, 2019.

[14] Michael Baddeley, Usman Raza, Aleksandar Stanoev, George Oikonomou, Reza Nejabati, Mahesh Sooriyabandara,
and Dimitra Simeonidou. 2019. Atomic-SDN: Is synchronous flooding the solution to software-defined networking
in IoT? IEEE Access 7 (2019), 96019–96034.

[15] Mamadou T. Bah, A. Azzouni, M. T. Nguyen, and Guy Pujolle. 2019. Topology discovery performance evaluation
of OpenDaylight and ONOS controllers. In Proceedings of the 2019 Conference on Innovation in Clouds, Internet, and

Networks. IEEE, Los Alamitos, CA, 285–291.
[16] Josh Bailey and Stephen Stuart. 2016. Faucet: Deploying SDN in the enterprise. Communications of the ACM 60, 1

(Dec. 2016), 45–49.
[17] Mohammad Banikazemi, David Olshefski, Anees Shaikh, John Tracey, and Guohui Wang. 2013. Meridian: An SDN

platform for cloud network services. IEEE Communications Magazine 51, 2 (Feb. 2013), 120–127.
[18] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. 2018. Distributed SDN control: Survey, taxonomy, and chal-

lenges. IEEE Communications Surveys & Tutorials 20, 1 (2018), 333–354.
[19] Xuecai Bao, Hao Liang, Yuan Liu, and Fenghui Zhang. 2019. A stochastic game approach for collaborative beam-

forming in SDN-based energy harvesting wireless sensor networks. IEEE Internet of Things Journal 6, 6 (Dec. 2019),
9583–9595.

[20] Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba. 2013. PolicyCop: An autonomic
QoS policy enforcement framework for software defined networks. In Proceedings of the IEEE SDN for Future Net-

works and Services (SDN4FNS’13). IEEE, Los Alamitos, CA, 1–7.
[21] GitHub. 2019. Barista: An Event-centric Composable NOS for Software-Defined Networks (SDN Controller). Re-

trieved May 14, 2020 from https://github.com/sdx4u/barista.
[22] Djamila Bendouda, Abderrezak Rachedi, and Hafid Haffaf. 2018. Programmable architecture based on software de-

fined network for Internet of Things: Connected dominated sets approach. Future Generation Computer Systems 80
(March 2018), 188–197.

[23] Samaresh Bera, Sudip Misra, and Athanasios V. Vasilakos. 2017. Software-defined networking for Internet of Things:
A survey. IEEE Internet of Things Journal 4, 6 (Dec. 2017), 1994–2008.

[24] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz, et al.
2014. ONOS. In Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking (HotSDN’14). ACM,
New York, NY, 1–6.

[25] Gary Berger. 2019. No.de Based OpenFLow Controller. Retrieved May 16, 2020 from https://github.com/gaberger/
NodeFLow.

[26] Idris Z. Bholebawa and Upena D. Dalal. 2018. Performance analysis of SDN/OpenFlow controllers: POX versus
floodlight. Wireless Personal Communications 98, 2 (2018), 1679–1699.

[27] Sujit Biswas, Kashif Sharif, Fan Li, Zohaib Latif, Salil S. Kanhere, and Saraju P. Mohanty. 2020. Interoperability and
synchronization management of blockchain-based decentralized e-health systems. IEEE Transactions on Engineering

Management 67, 4 (2020), 1–14.
[28] Sujit Biswas, Kashif Sharif, Fan Li, Sabita Maharjan, Saraju P. Mohanty, and Yu Wang. 2020. PoBT: A lightweight

consensus algorithm for scalable IoT business blockchain. IEEE Internet of Things Journal 7, 3 (March 2020), 2343–
2355.

[29] Sujit Biswas, Kashif Sharif, Fan Li, and Saraju P. Mohanty. 2020. Blockchain for E-health-care systems: Easier said
than done. Computer 53, 7 (July 2020), 57–67.

[30] Sujit Biswas, Kashif Sharif, Fan Li, Boubakr Nour, and Yu Wang. 2019. A scalable blockchain framework for secure
transactions in IoT. IEEE Internet of Things Journal 6, 3 (June 2019), 4650–4659.

[31] Andreas Blenk, Arsany Basta, Laurenz Henkel, Johannes Zerwas, Wolfgang Kellerer, and Stefan Schmid. 2018. perf-
bench: A tool for predictability analysis in multi-tenant software-defined networks. In Proceedings of the ACM SIG-

COMM Conference on Posters and Demos. ACM, New York, NY, 66–68.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

http://www.anastacia-h2020.eu/
https://github.com/tum-lkn/perfbench
https://github.com/tum-lkn/perfbench
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343542/Getting+Started
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343542/Getting+Started
https://github.com/sdx4u/barista
https://github.com/gaberger/NodeFLow
https://github.com/gaberger/NodeFLow

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:33

[32] Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. 2015. HyperFlex: An SDN virtualization architecture with
flexible hypervisor function allocation. In Proceedings of the IFIP/IEEE International Symposium on Integrated Network

Management. IEEE, Los Alamitos, CA, 397–405.
[33] Fabio Botelho, Alysson Bessani, Fernando M. V. Ramos, and Paulo Ferreira. 2014. On the design of practical fault-

tolerant SDN controllers. In Proceedings of the 3rd European Workshop on Software Defined Networks. IEEE, Los
Alamitos, CA.

[34] Mathieu Boussard, Dinh Thai Bui, Richard Douville, Pascal Justen, Nicolas Le Sauze, Pierre Peloso, Frederik Van-
deputte, and Vincent Verdot. 2018. Future spaces: Reinventing the home network for better security and automation
in the IoT era. Sensors 18, 9 (Sept. 2018), 2986.

[35] Mathieu Boussard, Serge Papillon, Pierre Peloso, Matteo Signorini, and Erez Waisbard. 2019. STewARD:SDN and
blockchain-based Trust evaluation for automated risk management on IoT devices. In Proceedings of the IEEE Con-

ference on Computer Communications Workshops (INFOCOM WKSHPS’19). IEEE, Los Alamitos, CA, 841–846.
[36] Elif Bozkaya and Berk Canberk. 2020. SDN-enabled deployment and path planning of aerial base stations. Computer

Networks 171 (April 2020), 107125.
[37] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. 2010. Maestro: A System for Scalable OpenFlow Control. Technical

Report TR10-08. Rice University.
[38] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker. 2007. Ethane:

Taking control of the enterprise. SIGCOMM Computer Communication Review 37, 4 (Aug. 2007), 1–12.
[39] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman, Dan Boneh, Nick McKeown, and Scott Shenker.

2006. SANE: A protection architecture for enterprise networks. In Proceedings of the USENIX Security Symposium,
Vol. 49. 50.

[40] Manisha Chahal and Sandeep Harit. 2019. Network selection and data dissemination in heterogeneous software-
defined vehicular network. Computer Networks 161 (Oct. 2019), 32–44.

[41] Manisha Chahal, Sandeep Harit, Krishn K. Mishra, Arun Kumar Sangaiah, and Zhigao Zheng. 2017. A survey on
software-defined networking in vehicular ad hoc networks: Challenges, applications and use cases. Sustainable Cities

and Society 35 (Nov. 2017), 830–840.
[42] Subhrendu Chattopadhyay. 2019. Aloe. Retrieved May 14, 2020 from https://github.com/subhrendu1987/Aloe-

Source.
[43] Subhrendu Chattopadhyay, Soumyajit Chatterjee, Sukumar Nandi, and Sandip Chakraborty. 2019. Aloe: An elastic

auto-scaled and self-stabilized orchestration framework for IoT applications. In Proceedings of the IEEE Conference

on Computer Communications (INFOCOM’19). IEEE, Los Alamitos, CA, 802–810.
[44] Djabir Abdeldjalil Chekired, Mohammed Amine Togou, Lyes Khoukhi, and Adlen Ksentini. 2019. 5G-slicing-enabled

scalable SDN core network: Toward an ultra-low latency of autonomous driving service. IEEE Journal on Selected

Areas in Communications 37, 8 (Aug. 2019), 1769–1782.
[45] Huang Ma Chi. 2019. PureSDN: Routing Application for FatTree Network. Retrieved May 12, 2020 from https://

github.com/Huangmachi/PureSDN.
[46] China863SDN. 2019. An Open Source SDN Controller for Cloud Computing Data Centers. Retrieved May 16, 2020

from https://github.com/China863SDN/DCFabric.
[47] Shihabur Rahman Chowdhury, Md. Faizul Bari, Reaz Ahmed, and Raouf Boutaba. 2014. PayLess: A low cost net-

work monitoring framework for software defined networks. In Proceedings of the 2014 IEEE Network Operations and

Management Symposium (NOMS’14). IEEE, Los Alamitos, CA, 1–9.
[48] Christian Sieber. 2018. hvbench: An open and Scalable SDN Hypervisor Benchmark. Retrieved May 21, 2020 from

https://github.com/tum-lkn/perfbench.
[49] Roberto Doriguzzi Corin, Matteo Gerola, Roberto Riggio, Francesco De Pellegrini, and Elio Salvadori. 2012. VeR-

TIGO: Network virtualization and beyond. In Proceedings of the European Workshop on Software Defined Networking.
IEEE, Los Alamitos, CA, 24–29.

[50] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, and Sujata Banerjee.
2011. DevoFlow: Scaling flow management for high-performance networks. In Proceedings of the ACM SIGCOMM

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM, New York,
NY, 254–265.

[51] Mohamad Darianian, Carey Williamson, and Israat Haque. 2017. Experimental evaluation of two OpenFlow con-
trollers. In Proceedings of the IEEE 25th International Conference on Network Protocols (ICNP’17). IEEE, Los Alamitos,
CA, 1–6.

[52] Tamal Das, Vignesh Sridharan, and Mohan Gurusamy. 2020. A survey on controller placement in SDN. IEEE Com-

munications Surveys & Tutorials 22, 1 (2020), 472–503.
[53] Bruno Trevizan de Oliveira, Lucas Batista Gabriel, and Cintia Borges Margi. 2015. TinySDN: Enabling multiple

controllers for software-defined wireless sensor networks. IEEE Latin America Transactions 13, 11 (Nov. 2015), 3690–
3696.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/subhrendu1987/Aloe-Source
https://github.com/subhrendu1987/Aloe-Source
https://github.com/Huangmachi/PureSDN
https://github.com/Huangmachi/PureSDN
https://github.com/China863SDN/DCFabric
https://github.com/tum-lkn/perfbench

133:34 L. Zhu et al.

[54] J. Van der Merwe, A. Cepleanu, K. D’Souza, B. Freeman, A. Greenberg, D. Knight, R. McMillan, et al. 2006. Dynamic
connectivity management with an intelligent route service control point. In Proceedings of the SIGCOMM Workshop

on Internet Network Management (INM’06). ACM, New York, NY, 29–34.
[55] Abdelouahid Derhab, Mohamed Guerroumi, Abdu Gumaei, Leandros Maglaras, Mohamed Amine Ferrag, Mithun

Mukherjee, and Farrukh Aslam Khan. 2019. Blockchain and random subspace learning-based IDS for SDN-enabled
industrial IoT security. Sensors 19, 14 (July 2019), 3119.

[56] Dmitry Zuikov, Alexander Vershilov, Kirill Zaborsky, Yury Shvedov, and Daria Zimarina. 2013. hcprobe: Framework
for testing OpenFlow controllers. Retrieved May 22, 2020 from https://github.com/ARCCN/hcprobe.

[57] Docker Inc.2019. Docker Overview: Docker Documentation. Retrieved May 16, 2020 from https://docs.docker.com/
engine/docker-overview/.

[58] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. 2013. Scalable network virtualization in software-defined net-
works. IEEE Internet Computing 17, 2 (March 2013), 20–27.

[59] Simon Duquennoy. 2019. Contiki OS. Retrieved May 12, 2020 from https://github.com/contiki-ng/contiki-ng/wiki.
[60] Tulio Dapper e Silva, Carlos F. Emygdio de Melo, Pedro Cumino, Denis Rosário, E. Cerqueira, and E. Pignaton de

Freitas. 2019. STFANET: SDN-based topology management for flying ad hoc network. IEEE Access 7 (2019), 173499–
173514. DOI:10.1109/ACCESS.2019.2956724

[61] Mesut Gunes, Matthias Wahlisch, Thomas C. Schmidt, Emmanuel Baccelli, and Oliver Hahm. 2019. RIOT: The
Friendly Operating System for the Internet of Things. Retrieved May 16, 2020 from https://www.riot-os.org/

[62] David Erickson. 2013. The Beacon OpenFlow Controller. In Proceedings of the 2nd ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking (HotSDN’13). ACM, New York, NY, 13–18.
[63] Joakim Eriksson. 2018. CoAP Documentation. Retrieved May 12, 2020 from https://github.com/contiki-ng/contiki-

ng/wiki/Documentation:-CoAP.
[64] ETSI. 2019. OSM Release 6. Retrieved May 12, 2020 from https://osm.etsi.org/wikipub/index.php/OSM_Release_SIX.
[65] Tungsten Fabric. 2019. Opencontrails Docs. Retrieved May 16, 2020 from https://github.com/tungstenfabric/

opencontrails-docs.
[66] A. Farrel, J.-P. Vasseur, and J. Ash. 2006. A Path Computation Element (PCE)-Based Architecture. IETF RFC 4655. IETF.
[67] Daniel Farrell. 2014. OpenDaylight Performance. Retrieved Oct. 18, 2020 from https://slides.com/dfarrell07/

opendaylight-performance/.
[68] Daniel Farrell. 2015. WCBench: CBench, Wrapped in Stuff That Makes It Useful. Retrieved May 12, 2020 from

https://github.com/dfarrell07/wcbench.
[69] Ivan Farris, Tarik Taleb, Yacine Khettab, and Jaeseung Song. 2019. A survey on emerging SDN and NFV security

mechanisms for IoT systems. IEEE Communications Surveys & Tutorials 21, 1 (2019), 812–837.
[70] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jacobus Merwe. 2004. The case for separating

routing from routers. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture.

5–12.
[71] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi. 2013. Participatory

networking: An API for application control of SDNs. ACM SIGCOMM Computer Communication Review 43, 4 (2013),
327–338.

[72] Florian and Anika Schwind. 2016. OpenFlow Controller Analysis Tool. Retrieved May 16, 2020 from https://github.
com/lsinfo3/ofcprobe.

[73] Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio Palazzo. 2015. SDN-WISE: Design, prototyping
and experimentation of a stateful SDN solution for WIreless SEnsor networks. In Proceedings of the IEEE Conference

on Computer Communications (INFOCOM’15). IEEE, Los Alamitos, CA, 513–521.
[74] Jianbin Gao, Kwame Opuni-Boachie Obour Agyekum, Emmanuel Boateng Sifah, Kingsley Nketia Acheampong, Qi

Xia, Xiaojiang Du, Mohsen Guizani, and Hu Xia. 2020. A blockchain-SDN-enabled Internet of vehicles environment
for fog computing and 5G networks. IEEE Internet of Things Journal 7, 5 (May 2020), 4278–4291.

[75] Sahil Garg, Kuljeet Kaur, Georges Kaddoum, Syed Hassan Ahmed, and Dushantha Nalin K. Jayakody. 2019. SDN-
based secure and privacy-preserving scheme for vehicular networks: A 5G perspective. IEEE Transactions on Vehic-

ular Technology 68, 9 (Sept. 2019), 8421–8434.
[76] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin

Zhan, and Hui Zhang. 2005. A clean slate 4D approach to network control and management. ACM SIGCOMM Com-

puter Communication Review 35, 5 (2005), 41–54.
[77] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McKeown, and Scott Shenker. 2008.

NOX: Towards an operating system for networks. ACM SIGCOMM Computer Communication Review 38, 3 (2008),
105–110.

[78] Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McKeown, and Ramesh Johari. 2009. Plug-n-Serve:
Load-balancing web traffic using OpenFlow. In Proceedings of ACM SIGCOMM Demos. https://conferences.sigcomm.
org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/ARCCN/hcprobe
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://github.com/contiki-ng/contiki-ng/wiki
https://doi.org/10.1109/ACCESS.2019.2956724
https://www.riot-os.org/
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-CoAP
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-CoAP
https://osm.etsi.org/wikipub/index.php/OSM_Release_SIX
https://github.com/tungstenfabric/opencontrails-docs
https://github.com/tungstenfabric/opencontrails-docs
https://slides.com/dfarrell07/opendaylight-performance/
https://slides.com/dfarrell07/opendaylight-performance/
https://github.com/dfarrell07/wcbench
https://github.com/lsinfo3/ofcprobe
https://github.com/lsinfo3/ofcprobe
https://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf
https://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:35

[79] Israat Tanzeena Haque and Nael Abu-Ghazaleh. 2016. Wireless software defined networking: A survey and taxon-
omy. IEEE Communcations Surveys & Tutorials 18, 4 (2016), 2713–2737.

[80] Hashicorp. 2020. Vagrant Github Repo.Retrieved May 22, 2020 from https://github.com/hashicorp/vagrant.
[81] Timothy Hinrichs, Natasha Gude, Martın Casado, John Mitchell, and Scott Shenker. 2008. Expressing and Enforcing

Flow-Based Network Security Policies. Technical Report. University of Chicago.
[82] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi, B. Naidu Kondapa, Chandan Bha-

gat, et al. 2018. B4 and after: Managing hierarchy, partitioning, and asymmetry for availability and scale in Google’s
software-defined WAN. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communi-

cation.ACM, New York, NY, 74–87.
[83] Zakaria Abou El Houda, Abdelhakim Senhaji Hafid, and Lyes Khoukhi. 2019. Cochain-SC: An intra- and inter-

domain DDoS mitigation scheme based on blockchain using SDN and smart contract. IEEE Access 7 (2019), 98893–
98907.

[84] Victoria Huang, Qiang Fu, Gang Chen, Elliott Wen, and Jonathan Hart. 2017. BLAC: A bindingless architecture for
distributed SDN controllers. In Proceedings of the IEEE 42nd Conference on Local Computer Networks (LCN’17). IEEE,
Los Alamitos, CA, 146–154.

[85] Jonathan Hui, David Culler, and Samita Chakrabarti. 2010. 6LoWPAN: Incorporating IEEE 802.15. 4 into the IP Archi-

tecture. White Paper. IEB Media.
[86] InMon Corp. 2019. sFlow-RT: Platform for Open Source Analytics Based Applications. Retrieved May 15, 2020 from

https://sflow-rt.com/.
[87] Philippos Isaia and Lin Guan. 2016. Performance benchmarking of SDN experimental platforms. In Proceedings of

the IEEE NetSoft Conference and Workshops (NetSoft’16). IEEE, Los Alamitos, CA, 116–120.
[88] Pedro Heleno Isolani, Juliano Araujo Wickboldt, Cristiano Bonato Both, Juergen Rochol, and Lisandro Zambenedetti

Granville. 2015. SDN interactive manager: An OpenFlow-based SDN manager. In Proceedings of the IFIP/IEEE Inter-

national Symposium on Integrated Network Management. IEEE, Los Alamitos, CA, 1157–1158.
[89] Wafa Ben Jaballah, Mauro Conti, and Chhagan Lal. 2020. Security and design requirements for software-defined

VANETs. Computer Networks 169 (March 2020), 107099.
[90] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, et al.

2013. B4: Experience with a globally-deployed software defined WAN. ACM SIGCOMM Computer Communication

Review 43, 4 (2013), 3–14.
[91] Michael Jarschel, Frank Lehrieder, Zsolt Magyari, and Rastin Pries. 2012. A flexible OpenFlow-controller benchmark.

In Proceedings of the European Workshop on Software Defined Networking. IEEE, Los Alamitos, CA, 48–53.
[92] Michael Jarschel, Christopher Metter, Thomas Zinner, Steffen Gebert, and Phuoc Tran-Gia. 2014. OFCProbe: A

platform-independent tool for OpenFlow controller analysis. In Proceedings of the IEEE 5th International Conference

on Communications and Electronics (ICCE’14). IEEE, Los Alamitos, CA, 182–187.
[93] Younchan Jung, Marnel Peradilla, and Ronnel Agulto. 2019. Packet key-based end-to-end security management on

a blockchain control plane. Sensors 19, 10 (May 2019), 2310.
[94] Ahmed Jawad Kadhim and Seyed Amin Hosseini Seno. 2019. Energy-efficient multicast routing protocol based on

SDN and fog computing for vehicular networks. Ad Hoc Networks 84 (March 2019), 68–81.
[95] Hiroaki Kawai. 2018. Twink. Retrieved May 26, 2020 from https://github.com/hkwi/twink.
[96] Aliaksandr Kazarez. 2016. LOOM Controller. Retrieved May 16, 2020 from https://github.com/FlowForwarding/

loom.
[97] Zuhran Khan Khattak, Muhammad Awais, and Adnan Iqbal. 2014. Performance evaluation of OpenDaylight SDN

controller. In Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS’14).
IEEE, Los Alamitos, CA, 671–676.

[98] Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, and Kpatcha Bayarou. 2014. Feature-based comparison and
selection of software defined networking (SDN) controllers. In Proceedings of the World Congress on Computer Ap-

plications and Information Systems (WCCAIS’14). IEEE, Los Alamitos, CA, 1–7.
[99] Woojoong Kim, Jian Li, James Won-Ki Hong, and Young-Joo Suh. 2016. OFMon: OpenFlow monitoring system in

ONOS controllers. In Proceedings of the IEEE NetSoft Conference and Workshops (NetSoft’16). IEEE, Los Alamitos, CA,
397–402.

[100] Yeonkeun Kim, Jaehyun Nam, Taejune Park, Sandra Scott-Hayward, and Seungwon Shin. 2019. SODA: A software-
defined security framework for IoT environments. Computer Networks 163 (Nov. 2019), 106889.

[101] Thomas Kohler, Frank Durr, and Kurt Rothermel. 2018. ZeroSDN: A highly flexible and modular architecture for
full-range distribution of event-based network control. IEEE Transactions on Network and Service Management 15, 4
(Dec. 2018), 1207–1221.

[102] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
et al. 2010. Onix: A distributed control platform for large-scale production networks. In Proceedings of the USENIX

Conference on Operating Systems Design and Implementation. 351–364.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/hashicorp/vagrant
https://sflow-rt.com/
https://github.com/hkwi/twink
https://github.com/FlowForwarding/loom
https://github.com/FlowForwarding/loom

133:36 L. Zhu et al.

[103] Diego Kreutz, Fernando M. V. Ramos, Paulo E. Verissimo, Christian E. Rothenberg, Siamak Azodolmolky, and Steve
Uhlig. 2015. Software-defined networking: A comprehensive survey. Proceedings of the IEEE 103, 1 (Jan. 2015),
14–76.

[104] Andre Kutzleb. 2015. ZSDN-Controller. Retrieved May 12, 2020 from https://github.com/zeroSDN/ZSDN-
Controller/.

[105] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo. 2004. The SoftRouter architecture. ACM HOT-

NETS. Retrieved September 29, 2020 from https://www.microsoft.com/en-us/research/publication/the-softrouter-
architecture/.

[106] Zohaib Latif, Kashif Sharif, Maria K. Alvi, and Fan Li. 2018. Simulation standardization: Current state and cross-
platform system for network simulators. In Mobile Ad-Hoc and Sensor Networks. Communications in Computer and
Information Science, Vol. 747. Springer, 497–508.

[107] Zohaib Latif, Kashif Sharif, Fan Li, Md. Monjurul Karim, Sujit Biswas, and Yu Wang. 2020. A comprehensive survey
of interface protocols for software defined networks. Journal of Network and Computer Applications 156 (April 2020),
102563.

[108] Byungjoon Lee, Sae Hyong Park, Jisoo Shin, and Sunhee Yang. 2014. IRIS: The Openflow-based recursive SDN con-
troller. In Proceedings of the 2014 16th International Conference on Advanced Communication Technology (ICACT’14).
1227–1231.

[109] He Li, Kaoru Ota, and Mianxiong Dong. 2019. LS-SDV: Virtual network management in large-scale software-defined
IoT. IEEE Journal on Selected Areas in Communication 37, 8 (Aug. 2019), 1783–1793.

[110] Shengru Li, Daoyun Hu, Wenjian Fang, Shoujiang Ma, Cen Chen, Huibai Huang, and Zuqing Zhu. 2017. Proto-
col oblivious forwarding (POF): Software-defined networking with enhanced programmability. IEEE Network 31, 2
(March 2017), 58–66.

[111] Chu Liang, Ryota Kawashima, and Hiroshi Matsuo. 2014. Scalable and crash-tolerant load balancing based on switch
migration for multiple open flow controllers. In Proceedings of the 2nd International Symposium on Computing and

Networking. IEEE, Los Alamitos, CA, 171–177.
[112] Ying-Dar Lin, Yu-Kuen Lai, Chen-You Wang, and Yuan-Cheng Lai. 2018. OFBench: Performance test suite on Open-

Flow switches. IEEE Systems Journal 12, 3 (Sept. 2018), 2949–2959.
[113] Linux Foundation. 2018. OpenDaylight Project. Retrieved May 12, 2020 from https://wiki.opendaylight.org.
[114] Jose Ruiz-Mas, Jose Saldana, Julian Fernandez-Navajas, Jose Luis Almodovar, Luis Sequeira, and Juan Luis de la

Cruz. 2018. Odin-Wi5. Retrieved May 12, 2020 from https://github.com/Wi5/odin-wi5/wiki.
[115] Guiyang Luo, Haibo Zhou, Nan Cheng, Quan Yuan, Jinglin Li, Fangchun Yang, and Xuemin Shen. 2020. Software

defined cooperative data sharing in edge computing assisted 5G-VANET. IEEE Transactions on Mobile Computing.

DOI:10.1109/TMC.2019.2953163
[116] Stephen Mallon, Vincent Gramoli, and Guillaume Jourjon. 2016. Are today’s SDN controllers ready for prime-

time? In Proceedings of the 41st IEEE Conference on Local Computer Networks (LCN’16). IEEE, Los Alamitos, CA,
325–332.

[117] Rahim Masoudi and Ali Ghaffari. 2016. Software defined networks: A survey. Journal of Network and Computer

Applications 67 (May 2016), 1–25.
[118] Arturo Mayoral, Ricard Vilalta, Raul Muñoz, Ramon Casellas, and Ricardo Martínez. 2017. SDN orchestration archi-

tectures and their integration with Cloud Computing applications. Optical Switching and Networking 26 (Nov. 2017),
2–13.

[119] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Com-

munication Review 38, 2 (2008), 69–74.
[120] Sebastiano Milardo and Angelos-Christos Anadiotis. 2019. SDN-WISE Lab. Retrieved May 12, 2020 from https://

github.com/sdnwiselab.
[121] Mininet Team. 2018. Mininet: An Instant Virtual Network on Your Laptop (or other PC) Mininet. Retrieved May 12,

2020 from http://mininet.org/.
[122] Sudip Misra and Niloy Saha. 2019. Detour: Dynamic task offloading in software-defined fog for IoT applications.

IEEE Journal on Selected Areas in Communications 37, 5 (May 2019), 1159–1166.
[123] Matthew Monaco, Oliver Michel, and Eric Keller. 2013. Applying operating system principles to SDN controller

design. In Proceedings of the 12th ACM Workshop on Hot Topics in Networks (HotNets’13). ACM, New York, NY.
[124] Habib Mostafaei and Michael Menth. 2018. Software-defined wireless sensor networks: A survey. Journal of Network

and Computer Applications 119 (Oct. 2018), 42–56.
[125] Jaehyun Nam. 2018. SDX4U: Software-Defined Everything for You. Retrieved December 14, 2019 from https:

//sdxdata.com/category/barista/

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/zeroSDN/ZSDN-Controller/
https://github.com/zeroSDN/ZSDN-Controller/
https://www.microsoft.com/en-us/research/publication/the-softrouter-architecture/
https://www.microsoft.com/en-us/research/publication/the-softrouter-architecture/
https://wiki.opendaylight.org
https://github.com/Wi5/odin-wi5/wiki
https://doi.org/10.1109/TMC.2019.2953163
https://github.com/sdnwiselab
https://github.com/sdnwiselab
http://mininet.org/
https://sdxdata.com/category/barista/
https://sdxdata.com/category/barista/

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:37

[126] Jaehyun Nam, Hyeonseong Jo, Yeonkeun Kim, Phillip Porras, Vinod Yegneswaran, and Seungwon Shin. 2018. Barista:
An event-centric NOS composition framework for software-defined networks. In Proceedings of the IEEE Conference

on Computer Communications (INFOCOM’18). IEEE, Los Alamitos, CA, 980–988.
[127] Jaehyun Nam, Hyeonseong Jo, Yeonkeun Kim, Phillip Porras, Vinod Yegneswaran, and Seungwon Shin. 2019.

Operator-defined reconfigurable network OS for software-defined networks. IEEE/ACM Transactions on Networking

27, 3 (June 2019), 1206–1219.
[128] Musa Ndiaye, Adnan M. Abu-Mahfouz, and Gerhard P. Hancke. 2020. SDNMM—A generic SDN-based modular

management system for wireless sensor networks. IEEE Systems Journal 14, 2 (June 2020), 2347–2357.
[129] Tri G. Nguyen, Trung Phan, Binh Nguyen, Chakchai So-In, Zubair Baig, and Surasak Sanguanpong. 2019. SeArch: A

collaborative and intelligent NIDS architecture for SDN-based cloud IoT networks. IEEE Access 7 (2019), 7678–7694.
[130] Van-Giang Nguyen, Anna Brunstrom, Karl-Johan Grinnemo, and Javid Taheri. 2017. SDN/NFV-based mobile packet

core network architectures: A survey. IEEE Communications Surveys & Tutorials 19, 3 (2017), 1567–1602.
[131] Anh Nguyen-Ngoc, Simon Raffeck, Stanislav Lange, Stefan Geissler, Thomas Zinner, and Phuoc Tran-Gia. 2018.

Benchmarking the ONOS controller with OFCProbe. In Proceedings of the 2018 IEEE 7th International Conference on

Communications and Electronics (ICCE’18). IEEE, Los Alamitos, CA, 367–372.
[132] Jéferson Campos Nobre, Allan M. de Souza, Denis Rosário, Cristiano Both, Leandro A. Villas, Eduardo Cerqueira,

Torsten Braun, and Mario Gerla. 2019. Vehicular software-defined networking and fog computing: Integration and
design principles. Ad Hoc Networks 82 (Jan. 2019), 172–181.

[133] Northbound Networks. 2019. Zodiac FX OpenFlow Switch Hardware. Retrieved May 12, 2020 from https://github.
com/NorthboundNetworks/ZodiacFX.

[134] NSNAM. 2019. NS-3, a Discrete-Event Network Simulator for Internet Systems. Retrieved May 12, 2020 from
https://www.nsnam.org/wiki/Main_Page.

[135] NSNAM. 2019. OpenFlow Switch Support: Model Library. Retrieved May 12, 2020 from https://www.nsnam.org/
docs/release/3.29/models/html/openflow-switch.html.

[136] Yustus Eko Oktian, SangGon Lee, HoonJae Lee, and JunHuy Lam. 2017. Distributed SDN controller system: A survey
on design choice. Computer Networks 121 (July 2017), 100–111.

[137] Open Networking Foundation (ONF). 2019. Open Network Operating System (ONOS). Retrieved May 12, 2020 from
https://onosproject.org/.

[138] Open Networking Foundation (ONF). 2012. OpenFlow Switch Specification, Version 1.3.0. Retrieved May 16, 2020
from https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf.

[139] OpenStack Team. 2019. OpenStack Havana. Retrieved May 16, 2020 from https://www.openstack.org/software/
havana/.

[140] Haixia Peng, Qiang Ye, and Xuemin Sherman Shen. 2019. SDN-based resource management for autonomous vehic-
ular networks: A multi-access edge computing approach. IEEE Wireless Communications 26, 4 (Aug. 2019), 156–162.

[141] Charles E. Perkins and Elizabeth M. Royer. 1999. Ad-hoc on-demand distance vector routing. In Proceedings of the

2nd IEEE Workshop on Mobile Computing Systems and Applications. IEEE, Los Alamitos, CA, 90–100.
[142] Kevin Phemius, Mathieu Bouet, and Jeremie Leguay. 2014. DISCO: Distributed SDN controllers in a multi-domain

environment. In Proceedings of the IEEE Network Operations and Management Symposium (NOMS’14). IEEE, Los
Alamitos, CA.

[143] Mehran Pourvahab and Gholamhossein Ekbatanifard. 2019. An efficient forensics architecture in software-defined
networking-IoT using blockchain technology. IEEE Access 7 (2019), 99573–99588.

[144] POX. 2018. POX Controller Manual. Retrieved May 12, 2020 from https://noxrepo.github.io/pox-doc/html/.
[145] Raspberry Pi Foundation. 2019. Raspberry Pi 3 Model B+. Retrieved May 12, 2020 from https://www.raspberrypi.

org/products/raspberry-pi-3-model-b-plus/.
[146] Shailendra Rathore, Byung Wook Kwon, and Jong Hyuk Park. 2019. BlockSecIoTNet: Blockchain-based decentralized

security architecture for IoT network. Journal of Network and Computer Applications 143 (Oct. 2019), 167–177.
[147] Danda B. Rawat. 2019. Fusion of software defined networking, edge computing, and blockchain technology for

wireless network virtualization. IEEE Communications Magazine 57, 10 (Oct. 2019), 50–55.
[148] James Ray. 2019. Ethereum. Retrieved May 15, 2020 from https://github.com/ethereum/wiki/wiki.
[149] Yakov Rehkter, Tony Li, and Susan Hares. 2006. A Border Gateway Protocol 4. IETF RFC 4271. IETF.
[150] Wei Ren, Yan Sun, Hong Luo, and Mohsen Guizani. 2019. BLLC: A batch-level update mechanism with low cost for

SDN-IoT networks. IEEE Internet of Things Journal 6, 1 (Feb. 2019), 1210–1222.
[151] Wei Ren, Yan Sun, Hong Luo, and Mohsen Guizani. 2019. A novel control plane optimization strategy for important

nodes in SDN-IoT networks. IEEE Internet of Things Journal 6, 2 (April 2019), 3558–3571.
[152] RUNOS. 2019. RUNOS SDN and OpenFlow Controller. Retrieved May 16, 2020 from https://github.com/ARCCN/

runos.
[153] Ryu SDN Framework Community. 2017. Ryu SDN Framework. Retrieved December 12, 2020 from https://github.

com/faucetsdn/ryu.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/NorthboundNetworks/ZodiacFX
https://github.com/NorthboundNetworks/ZodiacFX
https://www.nsnam.org/wiki/Main_Page
https://www.nsnam.org/docs/release/3.29/models/html/openflow-switch.html
https://www.nsnam.org/docs/release/3.29/models/html/openflow-switch.html
https://onosproject.org/
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.openstack.org/software/havana/
https://www.openstack.org/software/havana/
https://noxrepo.github.io/pox-doc/html/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://github.com/ethereum/wiki/wiki
https://github.com/ARCCN/runos
https://github.com/ARCCN/runos
https://github.com/faucetsdn/ryu
https://github.com/faucetsdn/ryu

133:38 L. Zhu et al.

[154] Ousmane Sadio, Ibrahima Ngom, and Claude Lishou. 2020. Design and prototyping of a software defined vehicular
networking. IEEE Transactions on Vehicular Technology 69, 1 (Jan. 2020), 842–850.

[155] Dipjyoti Saikia, SeokHwan Kong, Nikhil Malik, and Dayoung Kim. 2015. OpenMuL SDN Platform. Retrieved May
16, 2020 from https://github.com/openmul/openmul.

[156] Ola Salman, Imad H. Elhajj, Ayman Kayssi, and Ali Chehab. 2016. SDN controllers: A comparative study. In Proceed-

ings of the 18th Mediterranean Electrotechnical Conference (MELECON’16). IEEE, Los Alamitos, CA, 1–6.
[157] Mohd Abuzar Sayeed, Rajesh Kumar, and Vishal Sharma. 2019. Efficient data management and control over WSNs

using SDN-enabled aerial networks. International Journal of Communication Systems 33, 1 (Aug. 2019), e4170.
[158] Hichem Sedjelmaci and Sidi Mohammed Senouci. 2015. An accurate and efficient collaborative intrusion detection

framework to secure vehicular networks. Computers & Electrical Engineering 43 (April 2015), 33–47.
[159] Syed Abdullah Shah, Jannet Faiz, Maham Farooq, Aamir Shafi, and Syed Akbar Mehdi. 2013. An architectural evalu-

ation of SDN controllers. In Proceedings of the IEEE International Conference on Communications (ICC’13). IEEE, Los
Alamitos, CA, 3504–3508.

[160] Alexander Shalimov, D. Zuikov, D. Zimarina, Vasily Pashkov, and Ruslan Smeliansky. 2013. Advanced study of
SDN/OpenFlow controllers. In Proceedings of the 9th Central and Eastern European Software Engineering Confer-

ence.ACM, New York, NY, 1–6.
[161] Ganesh H. Shankar. 2018. OFNet Quick User Guide. Retrieved May 16, 2020 from https://www.slideshare.net/

monjurul88/ofnetsdn-controller-testing-framework.
[162] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McKeown, and Guru Parulkar.

2009. FlowVisor: A Network Virtualization Layer. Technical Report. OpenFlow Switch Consortium.
[163] Rob Sherwood and K.-K. Yap. 2011. Cbench Controller Benchmarker. Retrieved May 12, 2020 from https://github.

com/andi-bigswitch/oflops/tree/master/cbench.
[164] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip Porras, Vinod Yegneswaran,

Jiseong Noh, and Brent Byunghoon Kang. 2014. Rosemary: A robust, secure, and high-performance network oper-
ating system. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
New York, NY, 78–89.

[165] Christian Sieber, Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. 2016. hvbench: An open and scalable SDN
network hypervisor benchmark. In Proceedings of the IEEE NetSoft Conference and Workshops. IEEE, Los Alamitos,
CA, 403–406.

[166] Pranav Kumar Singh, Sahil Sharma, Sunit Kumar Nandi, and Sukumar Nandi. 2019. Multipath TCP for V2I commu-
nication in SDN controlled small cell deployment of smart city. Vehicular Communications 15 (Jan. 2019), 1–15.

[167] Christoph Sommer. 2019. Veins Vehicle in Network Simulations: The Open Source Vehicular Network Simulation
Framework. Retrieved May 15, 2020 from http://veins.car2x.org/.

[168] Kalupahana L. K. Sudheera, Maode Ma, and Peter H. J. Chong. 2019. Link stability based optimized routing frame-
work for software defined vehicular networks. IEEE Transactions on Vehicular Technology 68, 3 (March 2019), 2934–
2945.

[169] Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, Myung-Sup Kim, Taehong Kim, and Chang-Gyu Lim. 2017.
Toward highly available and scalable software defined networks for service providers. IEEE Communications Mag-

azine 55, 4 (April 2017), 100–107.
[170] SUMO. 2019. SUMO User Documentation. Retrieved May 12, 2020 from https://sumo.dlr.de/docs/index.html.
[171] Yasuhito Takamiya and Nick Karanatsios. 2018. Trema OpenFlow Controller Framework. Retrieved May 12, 2020

from https://github.com/trema/.
[172] Xiaobo Tan, Hai Zhao, Guangjie Han, Wenbo Zhang, and Teng Zhu. 2019. QSDN-WISE: A new QoS-based routing

protocol for software-defined wireless sensor networks. IEEE Access 7 (2019), 61070–61082.
[173] OpenStack Team. 2019. OpenStack. Retrieved May 16, 2020 from https://www.openstack.org/software/.
[174] Tryfon Theodorou and Lefteris Mamatas. 2017. CORAL-SDN: A software-defined networking solution for the In-

ternet of Things. In Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined

Networks. IEEE, Los Alamitos, CA.
[175] Tryfon Theodorou, George Violettas, P. Valsamas, Sophia Petridou, and Lefteris Mamatas. 2019. A multi-protocol

software-defined networking solution for the Internet of Things. IEEE Communications Magazine 57, 10 (Oct. 2019),
42–48.

[176] Benoit Thebaudeau. 2019. An Introduction to Cooja Simulator. Retrieved May 12, 2020 from https://github.com/
contiki-os/contiki/wiki/An-Introduction-to-Cooja.

[177] Amin Tootoonchian. 2014. NOX Verity: The Last Version of the NOX Controller. Retrieved June 5, 2020 from
https://github.com/noxrepo/nox.

[178] Amin Tootoonchian and Yashar Ganjali. 2010. HyperFlow: A distributed control plane for OpenFlow. In Proceedings

of the Internet Network Management Conference on Research on Enterprise Networking.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/openmul/openmul
https://www.slideshare.net/monjurul88/ofnetsdn-controller-testing-framework
https://www.slideshare.net/monjurul88/ofnetsdn-controller-testing-framework
https://github.com/andi-bigswitch/oflops/tree/master/cbench
https://github.com/andi-bigswitch/oflops/tree/master/cbench
http://veins.car2x.org/
https://sumo.dlr.de/docs/index.html
https://github.com/trema/
https://www.openstack.org/software/
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/noxrepo/nox

SDN Controllers: A Comprehensive Analysis and Performance Evaluation Study 133:39

[179] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. 2010. OpenTM: Traffic matrix estimator for OpenFlow
networks. In Passive and Active Measurement. Springer, 201–210.

[180] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sherwood. 2012. On controller
performance in software-defined networks. In Proceedings of the USENIX Conference on Hot Topics in Management

of Internet, Cloud, and Enterprise Networks and Services.
[181] Truffle Blockchain Group. 2019. Sweet Tools for Smart Contracts: Truffle Suite. Retrieved May 15, 2020 from

https://www.trufflesuite.com/.
[182] Hardeep Uppal and Dane Brandon. 2010. OpenFlow Based Load Balancing. Technical Report CSE561 Networking

Project. University of Washington.
[183] Niels L. M. van Adrichem, Christian Doerr, and Fernando A. Kuipers. 2014. OpenNetMon: Network monitoring in

OpenFlow software-defined networks. In Proceedings of the IEEE Network Operations and Management Symposium

(NOMS’14). IEEE, Los Alamitos, CA, 1–8.
[184] Vijay Varadharajan, Kallol K. Karmakar, and Udaya Tupakula. 2017. Securing communication in multiple au-

tonomous system domains with SDN. In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service

Management. IEEE, Los Alamitos, CA, 195–203.
[185] Bhuvaneswaran Vengainathan, Anton Basil, Mark Tassinari, Vishwas Manral, and Sarah Banks. 2018. Benchmarking

Methodology for Software-Defined Networking (SDN) Controller Performance. IETF RFC 8456. IETF.
[186] Veryx Technologies. 2016. PktBlaster SDN Datasheet. Retrieved May 16, 2020 from https://www.veryxtech.com/wp-

content/uploads/2015/10/Datasheet-PktBlaster-SDN-Controller-Test5.pdf.
[187] Allan Vidal, Christian Esteve Rothenberg, and Fábio Luciano Verdi. 2014. The libfluid OpenFlow driver implemen-

tation. In Proceedings of the 32nd Brazilian Symposium on Computer Networks. 1029–1036.
[188] George Violettas, Sophia Petridou, and Lefteris Mamatas. 2018. Routing under heterogeneity and mobility for the

Internet of Things: A centralized control approach. In Proceedings of the IEEE Global Communications Conference.

IEEE, Los Alamitos, CA, 1–7.
[189] Petra Vizarreta, Kishor Trivedi, Bjarne Helvik, Poul Heegaard, Andreas Blenk, Wolfgang Kellerer, and Carmen Mas

Machuca. 2018. Assessing the maturity of SDN controllers with software reliability growth models. IEEE Transactions

on Network and Service Management 15, 3 (Sept. 2018), 1090–1104.
[190] Andreas Voellmy and Junchang Wang. 2012. Scalable software defined network controllers. ACM SIGCOMM Com-

puter Communication Review 42, 4 (Sept. 2012), 289–290.
[191] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Caesar, and Brighten Godfrey. 2016. Ravel: A database-defined

network. In Proceedings of the Symposium on SDN Research (SOSR’16). ACM, New York, NY.
[192] Junhua Wang, Kai Liu, Ke Xiao, Xiumin Wang, Qingwen Han, and Victor Chung Sing Lee. 2019. Delay-constrained

routing via heterogeneous vehicular communications in software defined BusNet. IEEE Transactions on Vehicular

Technology 68, 6 (June 2019), 5957–5970.
[193] Richard Wang, Dana Butnariu, and Jennifer Rexford. 2011. OpenFlow-based server load balancing gone wild. In

Proceedings of the USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and

Services.
[194] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie. 2015. A survey on software-defined

networking. IEEE Communications Surveys & Tutorials 17, 1 (2015), 27–51.
[195] Lixia Xie, Ying Ding, Hongyu Yang, and Xinmu Wang. 2019. Blockchain-based secure and trustworthy Internet of

Things in SDN-enabled 5G-VANETs. IEEE Access 7 (2019), 56656–56666.
[196] Liu Xingtao, Guo Yantao, Wu Wei, Zhou Sanyou, and Li Jiliang. 2016. Network virtualization by using software-

defined networking controller based Docker. In Proceedings of the IEEE Information Technology, Networking, Elec-

tronic, and Automation Control Conference. IEEE, Los Alamitos, CA, 1112–1115.
[197] Fangmin Xu, Huanyu Ye, Fan Yang, and Chenglin Zhao. 2019. Software defined mission-critical wireless sensor

network: Architecture and edge offloading strategy. IEEE Access 7 (2019), 10383–10391.
[198] Lily Yang, Todd A. Anderson, Ram Gopal, and Ram Dantu. 2004. Forwarding and Control Element Separation (ForCES)

Framework. IETF RFC 3746. IETF.
[199] Ibrar Yaqoob, Iftikhar Ahmad, Ejaz Ahmed, A. Gani, Muhammad Imran, and N. Guizani. 2017. Overcoming the

key challenges to establishing vehicular communication: Is SDN the answer?IEEE Communications Magazine 55, 7
(2017), 128–134.

[200] Soheil Hassas Yeganeh and Yashar Ganjali. 2012. Kandoo: A framework for efficient and scalable offloading of control
applications. In Proceedings of the 1st Workshop on Hot Topics in Software Defined Networks. ACM, New York, NY,
19–24.

[201] Soheil Hassas Yeganeh and Yashar Ganjali. 2014. Beehive: Towards a simple abstraction for scalable software-defined
networking. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks (HotNets’14). ACM, New York, NY,
1–7.

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://www.trufflesuite.com/
https://www.veryxtech.com/wp-content/uploads/2015/10/Datasheet-PktBlaster-SDN-Controller-Test5.pdf
https://www.veryxtech.com/wp-content/uploads/2015/10/Datasheet-PktBlaster-SDN-Controller-Test5.pdf

133:40 L. Zhu et al.

[202] Muhammad Usman Younus, Saif ul Islam, and Sung Won Kim. 2019. Proposition and real-time implementation of
an energy-aware routing protocol for a software defined wireless sensor network. Sensors 19, 12 (June 2019), 2739.

[203] Alejandro Molina Zarca, Jorge Bernal Bernabe, Ruben Trapero, Diego Rivera, Jesus Villalobos, Antonio Skarmeta,
Stefano Bianchi, Anastasios Zafeiropoulos, and Panagiotis Gouvas. 2019. Security management architecture for
NFV/SDN-aware IoT systems. IEEE Internet of Things Journal 6, 5 (Oct. 2019), 8005–8020.

[204] Alejandro Molina Zarca, Dan Garcia-Carrillo, Jorge Bernal Bernabe, Jordi Ortiz, Rafael Marin-Perez, and Antonio
Skarmeta. 2019. Enabling virtual AAA management in SDN-based IoT networks. Sensors 19, 2 (Jan. 2019), 295.

[205] Pan Zhang. 2016. MicroFlow: The Light-Weighted, Lightning Fast OpenFlow SDN Controller. Retrieved May 16,
2020 from https://github.com/PanZhangg/Microflow.

[206] Xiaoning Zhang, Shui Yu, Ji Zhang, and Zhichao Xu. 2019. Forwarding rule multiplexing for scalable SDN-based
Internet of Things. IEEE Internet of Things Journal 6, 2 (April 2019), 3373–3385.

[207] Yuan Zhang, Lin Cui, Wei Wang, and Yuxiang Zhang. 2018. A survey on software defined networking with multiple
controllers. Journal of Network and Computer Applications 103 (Feb. 2018), 101–118.

[208] Ning Zhao, Hao Wu, and Xiaonan Zhao. 2019. Consortium blockchain-based secure software defined vehicular
network. Mobile Networks and Applications 25, 1 (June 2019), 314–327.

[209] Yimeng Zhao, Luigi Iannone, and Michel Riguidel. 2015. On the performance of SDN controllers: A reality check. In
Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN’15).
IEEE, Los Alamitos, CA, 79–85.

[210] Liehuang Zhu, Xiangyun Tang, Meng Shen, Xiaojiang Du, and Mohsen Guizani. 2018. Privacy-preserving DDoS
attack detection using cross-domain traffic in software defined networks. IEEE Journal on Selected Areas in Commu-

nications 36, 3 (March 2018), 628–643.
[211] Zolertia. 2019. The Z1 Mote. Retrieved May 12, 2020 from https://github.com/Zolertia/Resources/wiki/The-Z1-mote.

Received December 2019; revised August 2020; accepted August 2020

ACM Computing Surveys, Vol. 53, No. 6, Article 133. Publication date: December 2020.

https://github.com/PanZhangg/Microflow
https://github.com/Zolertia/Resources/wiki/The-Z1-mote

