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Abstract—In Internet-of-Vehicles (IoV), smart vehicles can ef-
ficiently process various sensing data through federated learning
(FL) - a privacy-preserving distributed machine learning (ML)
approach that allows collaborative development of the shared
ML model without any data exchange. However, traditional FL
approaches suffer from poor security against the system noise,
e.g., due to low-quality trained data, wireless channel errors, and
malicious vehicles generating erroneous results, which affects the
accuracy of the developed ML model. To address this problem,
we propose a novel FL model based on the concept of Lagrange
coded computing (LCC) - a coded distributed computing (CDC)
scheme that enables enhancing the system security. In particular,
we design the first L-CoFL (Lagrange coded FL) model to
improve the accuracy of FL computations in the presence of low-
quality trained data and wireless channel errors, and guarantee
the system security against malicious vehicles. We apply the
proposed L-CoFL model to predict the traffic slowness in IoV and
verify the superior performance of our model through extensive
simulations.

Index Terms—Coded distributed computing (CDC), data pri-
vacy, federated learning, Internet of Vehicles (IoV), machine
learning, security

I. INTRODUCTION

In the IoV, smart vehicles are empowered to collect envi-

ronmental data through heterogeneous sensors, which can be

data provision to perform ML tasks and produce accurate ML

models for traffic prediction, road condition analysis and route

planing [1]. However, traditional ML approaches require data

exchange between the vehicles and fusion centres, e.g., cloud

processors and edge servers installed at the base stations (BSs)

or roadside units (RSUs), which train the ML model based on

data sent from the vehicles [2]. Clearly, such approaches are

vulnerable to privacy leaks and security breaches, since the

data can be intercepted and/or altered during the process of

data exchange [3].

To tackle this issue, the vehicles can use FL [4] that allows

training the shared ML model without revealing private data.

In particular, with FL, each vehicle only exchanges non-private

ML results generated through local training of its own ML

model and then, update the shared ML model accordingly until

achieving the targeted accuracy [5]. Unfortunately, existing

FL approaches are greatly impacted by the system noise,

e.g., due to low-quality trained data, wireless channel errors,

and malicious vehicles generating erroneous results, that can

significantly reduce the accuracy of the shared ML model. To

address this problem, several approaches have been proposed

by integrating FL with supplementary technologies, including

intrusion detection methods to remove malicious vehicles, e.g.,

[6], and blockchain-based solutions to discard erroneous ML

results, e.g., [7]. Nonetheless, these methods require verifica-

tion of ML results produced by vehicles, which is compute-

intensive and yields high delay/signalling/energy overheads.

Therefore, unlike existing methods to deal with the system

noise, in this paper, we propose another approach. In this

approach, we deploy an LCC model - a lightweight CDC

model that can provide security against the system noise by

introducing computational redundancy to the data processed

by the vehicles in the FL-enabled IoV system. The concept

of CDC origins from distributed computing systems, in which

redundant information is added/encoded into data computed by

each distributed device, resulting in that the server can correct

erroneous results produced by some devices based on specific

decoders and obtain the final computing result [8]. Hence, the

key idea of applying LCC in the FL-enabled IoV system is as

follows. It uses Lagrange polynomial interpolation to encode

data processed by the vehicles, which enables to recover the

final ML result (at the fusion centre) by the Reed-Solomon

decoder even though some of the returned results are erroneous

due to the system noise.

However, the decoding of ML results cannot be performed

in the existing LCC model with the Reed-Solomon decoder

because it can only be applied to computing tasks denoted as

polynomial functions. Hence, to apply the LCC model, the ML

models that are typically based on the non-polynomial (i.e., ar-

tificial neural network [ANN]) functions must be transformed

to polynomial functions in advance. In addition, compared

to distributed computing, the process of data encoding in FL

systems cannot be conducted in the fusion centre because the

trained data are distributed on the vehicles. To solve these

two problems, we propose the first Lagrange coded FL model
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called L-CoFL to support the integration of LCC with FL

for secure FL-enabled IoV systems. In the L-CoFL model,

vehicles can encode their trained data locally based on the en-

coding elements given by the fusion centre. More importantly,

the ML models of IoV applications can be approximated by

the polynomial functions with high accuracy and, thus, can be

applied with the LCC model.

The main contributions of this paper are as follows.

• We adopt the concept of LCC to design the first Lagrange

coded FL model for secure FL-enabled IoV systems,

aimed at improving security against the system noise.

To facilitate the integration of LCC in the FL-enabled

IoV system, the proposed L-CoFL model supports the

encoding of trained datasets processed by the vehicles.

• To apply the developed L-CoFL model for practical FL

applications based on the non-polynomial ANN func-

tions, we propose the accurate low-complexity polyno-

mial approximation.

• We apply the proposed L-CoFL model to practical vehic-

ular applications for traffic slowness prediction based on

the ANN functions. We show (through extensive simula-

tions) that our scheme can achieve an ideal approximation

accuracy and effectively protect the system from the

malicious vehicles.

The rest of the paper is as follows. In Section II, we

review related works. In Section III, we present model of the

considered FL-enabled IoV system. In Section IV, we derive

the polynomial approximation and design the L-CoFL model.

In Section V, we develop the implementation of the L-CoFL

model for a vehicular application and evaluate its performance

in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

FL allows vehicles training their own ML models with their

sensing dataset, which their produced ML results are then ag-

gregated and used to update the shared ML model at the fusion

centre. As such, FL has several advantages such as protection

of data privacy and reduction of data transmission [9]–[11].

Moreover, the existing FL-enabled IoV applications [12]–[14]

mainly focused on improving the learning accuracy and reduc-

ing the traffic congestion and communication overhead. For

example, [12] proposed a multi-layer FL model in which each

RSU can select and aggregate ML results produced by local

vehicles, and the selected ML results by the RSUs are further

aggregated at cloud for updating the shared ML model. The

contexts of the vehicles and RSUs, e.g. location, are consid-

ered during the selection of ML results. Though the accuracy

of shared ML model was improved, privacy-preservation of the

ML results was ignored. In [13], a decentralized Byzantine-

Fault-Tolerance (BFT) solution was presented for FL-enabled

IoV applications, allowing each vehicle to exchange and verify

their ML results. Besides, peer-to-peer (P2P) FL was combined

with BFT to extend the HyRand protocol [15] to perform

publicly verifiable secret sharing among autonomous vehicles

(AV). Although the approach in [13] showed no side-effect on

the accuracy of shared ML model, the BFT-based consensus

methods are time-consuming that require multiple times of

communication between the vehicles. Besides, the impact

of erroneous ML results on the shared ML model was not

discussed.

In addition, the above FL-enabled IoV applications did not

consider protection of the system against the system noise. To

solve the problem, several works (e.g., [16]–[20]) integrated

blockchain with FL to perform secure aggregation. However,

these blockchain-based approaches have the following disad-

vantage. That is, the ML results produced by each vehicle

are verified by the set of validators in blockchains where the

process of consensus not only consumes enormous computing

resources, but also yields a large duration of delay. Hence,

such solutions are inapplicable for many delay-sensitive and

compute-intensive IoV applications.

To the best of our knowledge, this work is the first attempt to

adopt LCC to develop a secure and light model that can protect

the FL-enabled IoV systems against the system noise. In detail,

only small amount of computing resources is required for

the approximation of ML models. In addition, after training

their own model, the vehicles only submit output of their

updated models (i.e., prediction result) rather than large-scale

of model parameter to the fusion centre. As such, the data

transmission of the ML results aggregation is significantly

reduced. Moreover, the privacy of vehicles can be protected

effectively in our L-CoFL model with only the prediction

results exchanged. In contrast, the vehicles may suffer from

the privacy leakage during the exchange of model parameters

in traditional FL approaches [21].

III. SYSTEM MODEL

A. FL-enabled IoV System

We consider the FL-enabled IoV system with a set of V
vehicles denoted as V = {vi}Vi=1 and a fusion centre, e.g.,

edge server installed at a BS or RSU near the vehicles. Each

vehicle vi has a local dataset Di = {(xk,yk)}Ki

k=1, where

(xk,yk) is the kth tuple of feature and label vectors, and Ki

is the size of data owned by vehicle vi. The fusion centre is

responsible for initializing and updating the shared ML model

based on the ML results (model parameter) of the vehicles,

which train their own ML models based on the local datasets.

The system operates as follows. At the rth round of global

training, the fusion centre transmits the shared ML model to

each vehicle, which w(r−1) is parameter of the shared ML

model updated at the last round. Furthermore, each vehicle vi
inputs the local dataset Di into the received shared ML model

and produces the local ML result wr
i through the iterative

gradient descent [22]. We denote wr,t
i as the local ML result

of vehicle vi at the tth round of local training, and wr,0
i is the

received shared ML model from the fusion centre in current

global training. The local training of vehicle is represented as

wr,t
i = w

r,(t−1)
i + ρ∇wL(w;Di), (1)

where ρ is the learning rate of gradient descent algorithm.

∇wL(w;Di) is the gradient update based on the local ML re-

sult and dataset, which L(w;Di) is the adopted loss function,
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e.g., squared-SVM, linear regression, k-means and so on [23].

Furthermore, after L(w;Di) meets the predefined accuracy,

the vehicles send back the local ML results to the fusion centre

for updating the shared ML model. The update of shared ML

model is denoted as

wr =
1

V
V∑

i=1

wr,t
i , (2)

where the local ML results are averaged to produce the shared

ML model. Finally, the fusion centre delivers the updated

shared ML model to each vehicle again to start the next round

of global training until the shared ML model achieves the

targeted accuracy.

B. Lagrange Coded Computing Model

As shown in Fig. 1, the system noises, e.g., due to low-

quality trained data, dishonest computation and wireless chan-

nel errors, exist in some vehicles that produce the low-

accuracy and erroneous ML results. Based on (2), traditional

FL approaches have to average the ML results of the vehi-

cles to update the shared ML model. However, to compute

(2), these approaches generally assume that all vehicles are

honest and produce the accurate ML results that satisfy the

requirements of accuracy; or the low-accuracy and erroneous

ML results will significantly affect the performance of the

shared ML model and, consequently, the inference accuracy

of vehicles based on this model. Unfortunately, the existing

methods to solve the above problems (based on blockchains or

intrusion detections) consume enormous computing resources

and delays to verify accuracy of the ML results and reach

consensus in blockchains.

In contrast, CDC has been proposed in large-scale

distributed computing to tackle fundamental bottlenecks such

as communication efficiency, straggler, security and privacy

problems [22]. Among many proposed CDC methods, LCC

is the most promising to tackle the problem of untrustable

computing forged by malicious devices. The reason is that

LCC is easy to implement and can be applied to a great variety

of computing tasks, which should be polynomial functions

[24]. Here, we uniformly describe the devices in distributed

computing as the vehicles in IoV. The implementation of

LCC in the distributed computing can be divided into three

steps: Encoding, Task Computing and Decoding, as below.

1) Encoding: Without loss of generality, we define a

computing task as a polynomial function C of degree deg(C),
which is computed over an input dataset X by a set of vehicles

in V. In distributed computing systems, the data is owned and

processed by the fusion centre before the vehicles compute

the task. In order to deliver the input data to the vehicles, the

fusion centre partitions the dataset X into M batches, that is,

X = {Xm}Mm=1. Then, the final result of the computing task is

described as Y = {ym = C(Xm)}Mm=1. However, considering

the existence of malicious vehicles, these data are not sent to

the vehicles directly. Instead, the data are encoded based on

the Lagrange interpolation formula in order to produce data

redundancy in each dataset sent to the vehicles. By doing so,

the fusion centre can find the accurate final result based on

the computing results of the vehicles, even if some of which

are erroneous or missed.

To encode the data, the fusion centre initially selects M
distinct elements, i.e., {�m}Mm=1, for each batch of data,

followed by generating a Lagrange interpolation formula H
of degree deg(H) ≤ (M− 1) as follows:

H(z) =
M∑

m=1

Xm

M∑
n=1,n �=m

z − �n
�m − �n

. (3)

In (3), we can find that H(�m) = Xm. Furthermore, the

fusion centre selects V distinct elements, i.e., {ρi}Vi=1, for

each vehicle. Note that all the selected elements should be

different, that is, {�m}Mm=1

⋂{ρi}Vi=1 = ∅. Finally, the fusion

centre encodes the data for each vehicle as follows:

X̃i = H(ρi), i ∈ V. (4)

2) Task Computing: After encoding the data, the fusion

centre sends the encoded input data X̃i and computing task

C to each vehicle. Then, the vehicles compute the task on the

data as follows:

Ỹi = C(X̃i), i ∈ V. (5)

Note that the vehicles cannot decode the encoded data into the

raw data because they have no idea on the elements {�m}Mm=1

and {ρi}Vi=1. The vehicles return the local computing results

Ỹi after they finish the task computing.

3) Decoding: To obtain the final result, the fusion centre

has to decode the computing results of the vehicles. Here,

we consider two different assumptions regarding the vehi-

cles. The first assumption is that all vehicles are honest

and produce the accurate computing results. As such, even

though some of computing results are straggling, the final

result can be easily decoded by the Lagrange interpolation

method [25]. Another assumption is that some of the vehicles

are dishonest and produce the erroneous computing results.

In this case, the fusion centre has to exploit Reed-Solomon

decoder to compute and reconstruct the polynomial function

C(H(z)) [24]. To reconstruct the polynomial function of

degree deg(C(H(z))) = deg(C)deg(H(z)) ≤ (M−1)deg(C),
it requires evaluations on (M − 1)deg(C) + 1 of different

elements. Moreover, we assume that the number of computing

results from the malicious vehicles is E . For each malicious

result, Reed-Solomon decoder requires evaluations at two

additional elements. Finally, if the following requirement is

satisfied, the fusion centre can decode and obtain the accurate

final result:

(M− 1)deg(C) + 2E + 1 ≤ V. (6)

The system is called E-secure if the fusion centre can decode

the final result successfully with the existence of E malicious

vehicles. Based on the Reed-Solomon decoder, the fusion

centre can find all coefficients of the polynomial function of
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Fig. 1. Lagrange coded federated learning (L-CoFL) model for IoV.

C(H(z)), from which the accurate final result can be found

according to:

Y = {Yi}Mi=1 = {C(Xi)}Mi=1 = {C(H(�i))}Mi=1. (7)

IV. L-COFL: LAGRANGE CODED FL MODEL FOR

FL-ENABLED IOV SYSTEMS

To secure FL-enabled IoV systems, we propose the novel

FL model by applying the concept of LCC. Moreover, the

proposed L-CoFL model is designed to improve the inference

accuracy of each vehicle in the process of distributed training

and inference in the presence of low-quality trained data,

wireless channel errors, and malicious vehicles producing

erroneous results. Here, we assume that each vehicle collects

real-time data and develops their own models based on (1)

and (2). Meanwhile, vehicles use their trained model to obtain

the prediction results for their tasks. In this case, the L-

CoFL model can facilitate each vehicle to get the accurate

prediction results even some of their prediction results are

erroneous due to the system noise. Different from distributed

computing, the trained dataset in FL are located at the vehicles

and, thus, cannot be encoded at the fusion centre due to the

privacy concern. In addition, the ML models are generally

non-polynomial functions and, therefore, cannot be applied

with LCC and Reed-Solomon decoder directly to deal with

the erroneous prediction results. In the following, we detail

the L-CoFL model regarding solutions of the above problems.

The designed L-CoFL model is shown in Fig. 1. There

exist multiple vehicles and a group of edge servers installed

in BSs and RSUs, in which one of the edge servers near the

users is the fusion centre and the rest of them act as the relay

nodes between the fusion centre and vehicles. The vehicles

can collect data by the on-board sensors, e.g., information

regarding traffic lights and traffic jams, and gather data from

the IoT devices by the roadside, e.g., information about air

quality and monitor. The operation of the L-CoFL model

presented in Fig. 1 can be divided into three steps as follows.

Step 1: To protect privacy of the vehicles, the trained

dataset must be encoded locally. Therefore, the fusion centre

predefines and generates encoding elements for each vehicle.

We assume that the number of features in a piece of trained

data is M, and the datasets in each vehicle are split into

M batches for encoding. Then, the fusion centre generates

M distinct elements {�m}Mm=1 for each batch of data in the

vehicles. Meanwhile, the fusion centre assigns each vehicle

a distinct element {ρi}Vi=1. By doing so, the vehicles can

encode the local dataset based on (3) and (4) independently

after they get the encoding elements. Moreover, to apply

LCC and Reed-Solomon decoder, approximation approaches

such as the Least-square approximation [26], Taylor series

[27] and Chebyshev polynomial [28] must be introduced to

approximate ML models (usually non-polynomial functions)

by polynomial functions based on Weierstrass approximation

theorem (Theorem 1) which states that any continuous

function can be approximated by a polynomial function in

the defined closed interval [29].

Theorem 1 (Weierstrass approximation). We assume that
R(x) is a continuous function defined on the interval [x1, x2].
For every σ, there is a polynomial function Q(x) satisfying
|R(x)−Q(x)| ≤ σ for all x in [x1, x2].

Furthermore, while considering a specific approximation

method, the applicable domains of the adopted method

must be considered and match with ranges of the encoded

data that are decided by the selected encoding elements

and raw data. Here, we take Taylor expansion as an

example of the approximation method. Specifically, Taylor

expansion of logistic function converges to [-1,1], which is

the applicable domain of Taylor expansion to approximate

a complex function when the input values are extremely

large. Therefore, the encoded data have to be restricted in

the domain of [-1,1] by exploiting normalizing methods.

In general, the selection of approximation method and the

generation of encoding elements should be conducted together

while considering the specific applications and the range

of trained data. More details are presented in our proposed

L-CoFL model based vehicular application for traffic slowness

prediction in the next section. After making a decision on the
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approximation method A(x), the fusion centre sends it with

the encoding elements and shared ML model to each vehicle.

Step 2: After getting the messages from the fusion

centre, each vehicle splits and encodes local dataset by

using the Lagrange interpolation formula and encoding

elements based on (3) and (4). Then, the vehicles must

approximate the non-polynomial functions N (x) in the

shared ML model, e.g., activation function in each neuron

of neural network model, by the polynomial function P(x).
The approximating way is that the vehicles uniformly select

k elements {xi}ki=1 from the defined domain of N (x), and

produce the corresponding outputs {N (xi)}ki=1. After that,

the set of points {(xi,N (xi))}ki=1 is used to produce P(x) by

using A(x), and thus the activation function in each neuron

is replaced by the polynomial function. Note that the number

of selected elements k is decided by the vehicles according to

their contributed computing resource, which the more points

selected lead to the more accurate approximation. In addition,

the vehicles only have to approximate the shared ML model at

the first time they receive it. After that, the vehicle inputs the

encoded data into and trains the approximated model based

on the iterative gradient algorithms as (1) until achieving

the predefined accuracy. To secure the FL computation and

facilitate the vehicles to get the accurate prediction result

for their tasks after training their model, in this paper, the

vehicles only upload their prediction results, i.e., outputs of

the updated ML models (instead of parameters of the ML

models) to the fusion centre. Thus, the communication cost

can be significantly reduced. Note that the parameters of the

ML models can also be encoded before training to enable the

update of the shared ML models [29]; however, this is not

the goal of this paper.

Step 3: Due to the existence of system noises, the L-

CoFL model decodes the accurate prediction results by using

Reed-Solomon decoder when the requirement of (6) is met.

After collecting all prediction results from the vehicles, the

decoder exploit the results and the selected elements {ρi}Vi=1

to reconstruct the polynomial function of the updated shared

ML model. To this end, the most important thing is to

construct an error polynomial e(x) to locate error position

of the received prediction results by using Forney’s algorithm

[30], Berlekamp–Welch algorithm [31] and so on. Moreover,

the received prediction results are exploited to construct an

incoming polynomial I(x) based on the Lagrange interpola-

tion formula. Then, the approximating polynomial function of

the shared model, is reconstructed by C(x) = I(x) + e(x)
[30]. Finally, the accurate prediction results are obtained by

the Reed-Solomon decoders and sent back to each vehicles. As

such, the inaccurate prediction result produced with the system

noises in their local training can be removed, which, thus,

secure the FL computation as well as improving the security

of the system.

The time complexity/computing cost of L-CoFL model is

analyzed in Proposition 1 below.

Proposition 1. The time complexity of the L-CoFL model is
O(V(M2 + A(x)) +M + V3), where O(A(x)) is the time
complexity of the adopted approximation method A(x).

Proof : In Step 1, the fusion centre has to select the encoding

elements {�m}Mm=1 and {ρi}Vi=1 for the vehicles, which the

time complexity is O(M+V). In Step 2, each vehicle has to

encode the data by using the Lagrange interpolation formula

at M elements and, therefore, the time complexity is O(M2).
After that, the shared ML models are approximated by each

vehicle based on the approximation method A(x) at k points,

with the time complexity O(A(x)). For example, the time

complexity of Least-square approximation, Taylor series and

Chebyshev polynomial is k∗deg(f)2, in which f is the polyno-

mial function of the approximation methods. As such, the total

time complexity of local training isO(V(M2+A(x))). In Step
3, the fusion centre decodes the local prediction results based

on the Reed-Solomon decoder. The time complexity of Reed-

Solomon decoder is O((Z + 2E)3), where Z and E are the

recover threshold and number of erroneous prediction results,

respectively. However, since the upper bound of (Z + 2E)
is V , the time complexity of the Reed-Solomon decoder can

be calculated by O(V3). Thus, the way to compute the time

complexity of the L-CoFL model is to sum up the above time

complexities, which is O(V(M2 +A(x)) +M+ V3). �

V. L-COFL MODEL BASED TRAFFIC FLOW PREDICTION

In this section, we present a practical vehicular application

for traffic slowness prediction based on the L-CoFL model

with the aim to clarify the method to decide the approximation

function and encoding elements as follows. Specifically, we

exploit a multi-layer neural network (NN) model for this

application. From (3) and (4), we can find that the input data

of vehicle vi can be written as

X̃i = (p1, ..., pm, ..., pM)(Xi
1, ...,X

i
m, ...,Xi

M)T , (8)

where pm = ΠMn=1,n �=m
ρi−�n
�m−�n

, and the sum of pm is always

1, that is,
∑M

m=1 pm = 1 regardless of the values of encoding

elements (i.e., ρ, �). Moreover, if M > 1, there are always

some of pm < 0. Thus, the encoded data X̃i is generally

bigger than each raw data Xi
m. However, if each raw data can

be normalized into the domain of [-1,1], the encoded data,

i.e.,
∑M

m=1 |pm|Xi
m, can also be restricted into the domain

of [−D,D], where |pm| is the absolute value of pm, and

D is a constant bigger than one. As such, the condition of∑M
m=1 |pm| ≤ D should be satisfied while the fusion centre

generates the encoding elements, i.e.,

X̃i = (p1, ..., pM)(Xi
1, ...,X

i
M)T ∈ [−D,D], ∀i ∈ V

⇐⇒ |p1|+ ...+ |pM| ≤ D. (9)

In this case, since the domain of encoded data is confirmed,

the maximal approximation error is also known and the

approximation method can be decided. Based on the above

analysis, we adopt the least-square approximation as the

approximation method in this application since it achieves
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small approximation error in a specific domain if the degree of

polynomial function is determined when compared with other

approximation methods [26]. In this method, the coefficients

of the produced polynomial function are constructed to fit

the non-polynomial function in the NN model at a given

degree. Importantly, based on the least-square approximation,

the domain of input data of the produced polynomial function

can be restricted by the coefficients generation functions of

this method to a specific domain, which can fit to the targeted

domain in (9).

To apply the approximation method in this application, the

following function in the NN model should be approximated:

F(X̃i) =
1− e−w(˜Xi)T

1 + e−w(˜Xi)T
. (10)

The approximation way is described in Step 2 of the operation

procedure in section IV. After approximation, each vehicle

inputs the encoded data into the approximating NN model,

which is trained until the model achieves the predefined

accuracy. The accuracy of the approximating NN model in

the local training is computed by the loss function based on

the cross entropy:

L = −(ylnπ + (1− y)ln(1− π)), (11)

where y is the real label corresponding to the input data, and π
is the prediction result that is computed by π = 1+f(x)

2 . f(x)
is the approximating polynomial function of (10). Finally, the

vehicles upload their prediction result π to the fusion centre

for decoding and obtain the accurate prediction results.

VI. PERFORMANCE EVALUATION

In this section, we evaluate performance of the proposed L-

CoFL model that is designed and implemented on MATLAB

using the ML toolbox. Besides, we consider a vehicular sce-

nario with a single fusion center and 100 randomly distributed

vehicles. The fusion center is initialized within a BS where

the vehicles are placed randomly within 500 meter coverage

of or switch between different BSs or RSUs. The dataset used

in the evaluation are collected from vehicular environment in

urban area [32]. In the dataset, there are 16 individual features

to define the traffic pattern such as hour, immobilized bus,

broken truck, vehicle excess, accident victim, running over,

fire vehicles, occurrence involving freight, incident involving

dangerous freight, lack of electricity, fire, point of flooding,

manifestations, defect in the network of trolleybuses, tree on

the road, semaphore off and intermittent semaphore.

We now describe the result analysis regarding the imple-

mentation feasibility of the proposed L-CoFL model based on

LCC for vehicular applications. The goal of the application

is to predict the urban traffic behavior (slow or fast) in

percentage based on the features collected by the vehicles.

In the following experiments, we adopt a multi-layer NN

models. Moreover, to observe performance of the proposed

L-CoFL model, we introduce two comparison models, in-

cluding Plain FL model and Approximation-only FL model.
The approximation-only model means that the training NN

Fig. 2. Convergence of relative error of L-CoFL model with different degrees
of the approximation functions and the related work in [33] during the training
process, under the condition of no malicious vehicles.

Fig. 3. Relative error of the comparison models without malicious vehicles
in the system having different numbers of vehicles.

model is approximated by polynomial functions during the

training process, without using the Reed-Solomon decoder for

removing the impact of erroneous prediction results. Thus, the

approximation-only FL model cannot tackle the problems of

malicious vehicles. Furthermore, during the approximation of

the NN model, the least square approximation is done by using

21 sample points uniformly distributed on [−2, 2]. In addition,

in the following experiments, we propose two metrics, i.e.,

relative error and absolute error. The former is calculated by

dividing the gap of the prediction results between the examined

models and the plain FL model without malicious vehicles

(the most ideal model) by the prediction results of the plain

FL model without malicious vehicles. The latter one is the

absolute value of the gap of the prediction results between the

examined models and the plain FL model without malicious

vehicles.

In Fig. 2, we evaluate the convergence of relative errors

with different degrees of approximation functions. Here, we
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also compare the performance of our scheme with the related

work in [33] based on the random linear encoding. In [33],

they considered the scenarios with the fixed number (i.e., 24)

of vehicles with the aim to mitigate the impact of straggling

vehicles. Note that they assume all the vehicles are faithful

and, thus, do not use the Reed-Solomon decoder for decoding

and approximate the ML models. In this experiment, we use

a test dataset to get the prediction result from each vehicles at

different rounds of iteration of their local training, and decode

them at the fusion centre. By doing so, we calculate the relative

errors of the examined models. From the figure, we can find

that, based on the adopted approximation method, our scheme

with different degrees of approximation function can converge

fast, in which the higher degree of the function leads to

the higher approximation accuracy (i.e., lower relative error).

Importantly, compared to the related work in [33], our schemes

can achieve lower relative error and faster convergence speed.

In Fig. 3, we evaluate the performance of L-CoFL model

in terms of approximation of the NN models. Since we add a

random value to input data of plain FL model, the relative error

of the model is more than zero, with the aim to better compare

three models. From Fig. 3, we can find that the relative

errors of L-CoFL model and approximation-only FL model

are identical due to the fact that all the vehicles are honest

and there is no decoding failure. Moreover, their relative errors

become smaller with the number of vehicles. Therefore, the

approximation of the NN model is effective when the number

of vehicles is large.

Following this, we also introduce malicious vehicles and

observe the performance of the comparison models. Fig. 4

shows the convergence of decoded prediction results (at the

fusion centre) during the training process of vehicles, with

30% of malicious vehicles in the system. From Fig. 4, we can

find that the decoded prediction results are more stable based

on our proposed L-CoFL model due to the fact that the model

can effectively react against the erroneous prediction results

from the malicious vehicles with Reed-Solomon decoder. In

contrast, the prediction results based on the plain FL model

fluctuate rapidly and are hard to converge.

Furthermore, in Fig. 5, we evaluate the relative error of

comparison models with different percentages of malicious

vehicles in the system, ranging from 10% to 50%. In Fig. 5,

the relative error of the L-CoFL model is the smallest among

three models although it increases slightly with the number of

malicious vehicles in the system. More importantly, as shown

in Fig. 5, relative error of plain FL model and approximated FL

model can reach 0.25 during simulations, because they cannot

deal with the erroneous prediction results without decoders. In

contrast, the relative errors of the L-CoFL model are extremely

low until the number of malicious vehicles reaches 40%.

Therefore, the L-CoFL model can decode data successfully

when the number of malicious vehicles does not exceed the

recover threshold.

Fig. 6 shows the average absolute error of the comparison

models with different percentages of malicious vehicles in

the system. From this figure, the proposed L-CoFL model

Fig. 4. Convergence of decoded prediction results during the training process
of vehicles, with 30% of malicious vehicles in the system.

Fig. 5. Relative error of the comparison schemes with different percentages
of malicious vehicles in the system.

Fig. 6. Average absolute error of the comparison models with different
percentages of malicious vehicles in the system.
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Fig. 7. Comparison of relative error distribution among the comparison
models.

can secure the system against up to 30% malicious vehicles.

Moreover, even when the number of malicious vehicles is

higher than 30%, the proposed L-CoFL model still achieves

better accuracy than the plain FL and approximation-only FL

models.

In Fig. 7, we show the PDF of relative error between plain

FL, approximation-only FL, and L-CoFL while considering

both malicious and honest vehicles. In this experiment, we

also use a test dataset to get the prediction results from each

vehicles and decode them at the fusion centre. After that, we

calculate the relative error of each data and their distribution. It

is easy to find that the relative errors of the L-CoFL are lowest,

and most of the relative errors are lower than 0.2 based on the

test dataset. In contrast, the relative errors of plain FL model

and approximation-only FL are extremely high, i.e., more than

0.3. Therefore, our model can achieve the best performance in

terms of model accuracy.

Finally, we evaluate the computing cost/redundancy of our

scheme with different degrees of the approximation functions

and different rate of malicious vehicles in the system, shown

in Fig. 8. Note that the results in the figure are the average

computing cost of each piece of data. In Fig. 8, we can find

that the higher degree of approximation function incurs more

cost to approximate the non-polynomial functions in the ML

model. Meanwhile, according to section III-B, the decoder has

to evaluate at two additional point for each erroneous ML

results. Therefore, we can find from the figure that the more

malicious vehicles in the system, the higher computing cost

are incurred.

VII. CONCLUSION

In the paper, we proposed the novel L-CoFL model by

integrating LCC with FL to enhance the system security of the

FL-enabled IoV systems against the system noise such as low-

quality trained data, wireless channel errors, and erroneous ML

results produced by malicious vehicles. Furthermore, in order

to apply LCC to ML tasks of non-polynomial, we developed

Fig. 8. Computing cost/redundancy with different degrees of approximation
function and different rates of malicious vehicles in the system.

the simple but efficient approximation method with low degree

of approximation function to approximate the non-polynomial

ML model by a polynomial ML model. Finally, we applied the

L-CoFL model for a vehicular application to predict the traffic

slowness, and simulation results showed that the proposed L-

CoFL model can not only achieve a high accuracy in the

approximation of NN models, but also be effectively to deal

with the erroneous ML results produced by the malicious

vehicles.
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