IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021 331

DOLPHIN: Dynamically Optimized and
LLoad Balanced Path for Inter-Domain
SDN Communication

Zohaib Latif ~, Kashif Sharif

Sujit Biswas

Abstract—Software-Defined Networking has become an inte-
gral technology for large scale networks that require dynamic
flow management. It separates the control function from data
plane devices and centralizes it in a domain controller. However,
only a limited number of switches can be managed by a sin-
gle and centralized controller which introduces challenges such
as scalability, reliability, and availability. Distributed controller
architecture resolves these issues but also introduces new chal-
lenges of uneven load and traffic management across domains.
As real-world networks have redundant links, hence a significant
challenge is to distribute traffic flows on multiple paths, within a
domain, and across multiple independent domains. The selection
of ingress and egress switches becomes even more problematic
if the intermediate domain is non-cooperative. In this work, we
propose a Dynamically Optimized and Load-balanced Path for
Inter-domain (DOLPHIN) communication system, a customized
solution for different SDN controllers. It provides control beyond
the virtual switch elements in intra and inter-domain communica-
tion and extends the range of programmability to wireless devices,
such as the Internet of Things or vehicular networks. Extensive
simulation results show that the traffic load is distributed evenly
on multiple links connecting different domains. We model data
center communication and 5G vehicular network communication
to show that, by load balancing the flow completion times of the
different types of network traffic can be significantly improved.

Manuscript received May 31, 2020; revised October 28, 2020; accepted
December 13, 2020. Date of publication December 18, 2020; date of cur-
rent version March 11, 2021. The work of F. Li is supported by the
National Natural Science Foundation of China No. 62072040, 61772077 and
the Beijing Natural Science Foundation No. 4192051. The associate editor
coordinating the review of this article and approving it for publication was
M. E. Zhani. (Corresponding authors: Kashif Sharif; Fan Li.)

Zohaib Latif is with the School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100081, China, and also with the
Department of Computing, Riphah International University, Faislabad 44000,
Pakistan (e-mail: z.latif @bit.edu.cn).

Kashif Sharif and Fan Li are with the School of Computer Science
and Technology, Beijing Institute of Technology, Beijing 100081, China,
and also with Beijing Engineering Research Center of High Volume
Language Information Processing and Cloud Computing Applications, Beijing
Institute of Technology, Beijing 100081, China (e-mail: kashif@bit.edu.cn;
fli@bit.edu.cn).

Md Monjurul Karim is with the School of Computer Science and
Technology, Beijing Institute of Technology, Beijing 100081, China (e-mail:
mkarim @bit.edu.cn).

Sujit Biswas is with the Faridpur Engineering College, University of Dhaka,
Dhaka 1000, Bangladesh (e-mail: sujitedu@bit.edu.cn).

Madiha Shahzad is with the School of Sciences, University of Central
Lancashire, Pyla 7080, Cyprus (e-mail: mshahzadl @uclan.ac.uk).

Saraju P. Mohanty is with the Department of Computer Science and
Engineering, University of North Texas, Denton, TX 76207 USA (e-mail:
saraju.mohanty @unt.edu).

Digital Object Identifier 10.1109/TNSM.2020.3045725

, Senior Member, IEEE, Fan Li
, Member, IEEE, Madiha Shahzad, Member, IEEE, and Saraju P. Mohanty

, Member, IEEE, Md Monjurul Karim,
, Senior Member, IEEE

Index Terms—Software defined networking, inter-domain com-
munication, vertical programmability, load balancing.

I. INTRODUCTION

N TRADITIONAL networks, every network layer element

has its own decision making power and control mecha-
nisms. With the rapid growth of the Internet and a large
number of autonomous systems, it has become complicated for
network administrators to configure each device separately [1].
Software-Defined Networking (SDN) [2], [3] is a networking
paradigm that decouples control logic from the data plane and
centralizes it as a software-based entity. Due to this separa-
tion, data plane devices become simple forwarding nodes and
update the control plane by using well-defined Application
Programmable Interfaces (APIs) [4]. OpenFlow [5] is one of
the most widely used southbound API used for this purpose.
Based on the information provided by data plane devices, the
control plane generates a global view of the network and
pushes forwarding rules to the data plane. The high-level
management plane communicates with the control plane to
enforce various policies to control the network. Due to its
promising features and flexible network management, SDN
has been deployed in various network environments, such as
data centers [6] and wide-area networks [7].

Once the routing control is shifted to the centralized
controller (as compared to independent routers), hence the
traditional switches have to be replaced with SDN switches,
which use flow tables for forwarding. As soon as the switch
receives a new packet, it matches the packet header with
flow entries present in the flow table. In response to this
matching (if it finds any flow entry), the packet is forwarded
to the corresponding port. Otherwise, the packet is either
dropped or forwarded to the controller using the Packet IN
message. In response to this request, the controller generates
a Packet_OUT message and installs flow entry on the switches
along the path. Eventually, the switch takes action against this
entry and forwards the packet to the port for data transfer.
Once a flow entry is installed, the switch takes action accord-
ing to this rule. In the case of multiple paths between source
and destination, the controller picks one path to install (or
selects an existing flow group), however, this path remains the
same for the duration of that flow. This may create an overload

1932-4537 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5373-8063
https://orcid.org/0000-0001-7214-6568
https://orcid.org/0000-0002-2348-4488
https://orcid.org/0000-0002-6770-9845
https://orcid.org/0000-0003-2959-6541

332 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

on specific network links, while other possible paths remain
underutilized.

The architecture of SDN is centralized, and only a limited
number of switches can be managed by a single controller [8].
Moreover, whenever a new packet arrives at a data plane ele-
ment, it requires the involvement of a controller to process this
packet. An overloaded controller cannot process this packet
immediately, which may cause additional delay [9]. The cen-
tralized architecture also introduces reliability issues due to
a risk of controller failure [10]. To address the above issues,
distributed controller architecture is used which can be classi-
fied as distributed (flat) and hierarchal architectures where
every controller is responsible for its domain and updates
either neighboring controllers or a root controller [11], [12].
Similar to the centralized domain, the issue of uneven load
also exists in multiple domains but the extent is far greater as
the different domains are controlled by their respective con-
trollers. Inter-controller coordination becomes a complex task,
as a path selected by one domain controller may not be the
optimal path for the other domain.

In real-world networks, there are always multiple paths
between source and destination pairs. These pairs may either
be in the same domain or different domains. Load balancing
is a method that is used to distribute the traffic load evenly on
different paths. Major goals of load balancing are to: maximize
throughput, minimize delay, traffic shaping, and improved flow
completion time. Load balancing can be divided into two cat-
egories as static and dynamic. In static load balancing, the
route is calculated and allocated before the traffic transmis-
sion, and cannot be changed during data transmission. Since
the behavior of the user cannot be predicted, so it has poor
flow scheduling and causes congestion if the source transmits
a large number of flows. Dynamic load balancing, on the other
hand, can schedule traffic according to traffic statistics which
is updated periodically and provides better results as compared
to static load balancing. However, this can create overhead in
flow installation and processing.

In some specialized applications such as the Internet of
Things (IoT) [13], the network is composed of heterogeneous
devices like, home appliances, sensors, and other electronic
devices that can transfer data freely through the Internet.
These devices are connected with data plane elements (i.e.,
the SDN switches), however as they are not Openflow com-
patible, hence their position in the layered SDN structure is
not well defined [14]. In this work, we consider these devices
as part of the perception plane, as shown in Figure 1. In the
global view of the controller, perception plane elements cannot
be seen and OpenFlow cannot install flow rules on these ele-
ments. Hence, load balancing and global view for the elements
of perception plane is an added challenge in IoT domains.

To solve the problems of the uneven load over dif-
ferent paths between source and destination residing in
multiple independent domains, and to provide flow control
over perception plane elements for optimized traffic flow,
we propose Dynamically Optimized and Load-balanced PatH
for INter-domain SDN Communication (DOLPHIN). The
proposed solution provides dynamic load balancing where
paths can be changed on the fly during data transfer. The

" (Application) _
Northbound Interface (NBI)

Qe MME
*’b'
Southbound Interface (SBI)

Q\% &
l omain 1

Domain 2

(@egln

Fig. 1. Architecture of SDN layers with perception plane as the vertical
extension of data plane.

Vertical
Xtension

solution is implemented as a module on the SDN con-
troller and provides horizontal load balancing (inter-domain)
and vertical extension (into perception plane). In horizontal
load balancing, it enables dynamic traffic load optimization
over multiple paths in a single as well as in multiple
domains. Moreover, it manages traffic load among multiple
domains even if they are not directly connected and non-
cooperative domain(s) are present between the source and
destination. In the vertical extension, it provides control
over elements that are in the perception plane and balances
load accordingly. The main contributions of this work are
as follows.

e We propose a complete path computation and topology
extension (horizontal and vertical) system in a multi-
domain SDN environment.

e The proposed solution balances traffic load evenly on
multiple links, not only in single but across multiple
domains. It computes the weight value of each path based
on multiple metrics to find the optimal path at any given
time.

¢ In the case of a non-cooperative domain between source
and destination, it selects egress and ingress gateway
nodes that provide an optimal path across that domain,
while balancing the load in cooperative domains.

o The solution creates sub-controllers on access nodes to
extend the reach of SDN into the perception plane and is
capable of installing flows on mobile devices, with minor
application layer modifications.

o Extensive evaluations have been done to show the proof
of concept, and implementation has been done in a data
center and vehicular network environment to determine
the performance.

The rest of this article is organized as; Section II
describes the background of various existing algorithms, while
system design and architecture is presented in Section IIL
Section IV provides details of horizontal intra-domain load
balancing whereas, inter-domain load balancing and ver-
tical extension are discussed in Section V. Section VI
presents the simulation setup for experiments and performance
evaluation. Conclusion and future work are discussed
in Section VIL

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 333

TABLE I
COMPARATIVE ANALYSIS OF EXISTING SOLUTIONS

Ref. Intra-Domain Inter-Domain Vertlc.a !
Extension
[18] Controller pool usage - No
[20] Flow load balancing No No
[21] Path optimization No No
[22] Multipath selection No
[23] Multipath assignment No No
[24] Flow load balancing No No
[25] Dynamic load balancing No No
Dynamic,
[26] Threshold-based, No No
Congestion avoidance
[27] } P2P SDN, Loop No

avoidance

Scalability using
28]) coordinator controller No

Controller and Link load

[29] . No No
balancing

[30] - Switch migration No

[31] } Switch migration, No

Controller hierarchy
Inter-Controller msgs.

(321 reduction No
[33] ML for contr.oller load B No
balancing

[34] Path optimization - For UE only

35] MPLS for flow - No
optimization

[36] Flow path optimization No No

[37] Multipath Solution No No

This Work Dynamic flow Dynamic .ﬂows (w{out Yes .(Wlth
management cooperative domain) multipath)

II. RELATED WORKS

Initially, SDN was based on a single controller design with
a global network view responsible for managing the complete
network. Controllers like NOX [15] and POX [16] are primary
examples of such implementation. However, due to the scala-
bility and performance limitations, several studies suggest the
use of distributed controllers, such as [10], [17]-[19]. These
solutions enabled SDN for large scale networks but introduced
some new challenges in terms of load balancing and dynamic
optimal path selection. Load balancing on different paths and
load distribution of the controller are two different challenges.
In this work, we address the challenge of dynamic load bal-
ancing on different paths among source and destination, in
traditional networks and perception plane.

A. Load Balancing for Traffic Management

The work in [20] aims at dynamic balancing of traffic load
in SDN for flows under a single domain. It selects a transitory
path for the fresh flows, and if the load on a link is unsta-
ble, it diverts the flows onto a different path. The main issue
with it is that it sometimes changes the paths without need
which creates oscillation. In [21] authors discussed the shortest
path, shortest feasible path, and widest path by using modified
Dijkstra’s algorithm. However, this solution is also aimed at
a single domain SDN. In [22] authors described a multipath
routing scheme where the best optimal path is selected from
multiple paths under a single controller. The authors used
the Ryu controller to measure the network parameters for

quality of service such as latency, packet loss, and through-
put. Authors in [23] used the POX controller and enhanced
network performance by using a proactive approach where dif-
ferent paths are assigned to multiple flows evenly based on the
bandwidth of these paths. Authors in [24] provided load bal-
ancing in the Data Center Network environment using the POX
controller and assessed its performance through OpenFlow
Statistics. Their technique also implemented path restoration
and traffic classification. DLPO [25] is another solution for
dynamic load balancing under a single domain where flows of
a congested path are redirected to a lightly loaded path after
updating the flow tables of associated switches to reduce the
risk of packet loss. mED-SDN [26] describes an approach that
uses REST API and modified Dijkstra’s algorithm for SDN.
It uses a threshold value, which is set by the algorithm for
congestion prevention mechanism. It finds a new path when
the bandwidth exceeds the threshold value. Inter-domain multi-
path routing is addressed by using traffic engineering in a P2P
SDN [27], where the authors discussed information exchange
among multiple domains, path aggregation, and overhead. The
authors focused on routing loop formation and proposed a
solution using a routing table, topology table, and an adver-
tisement table. The work in [28] proposed a multi-domain
architecture and used a coordinator controller, which is con-
nected with domain controllers using a unified NBI. However,
this work does not address load balancing on multiple paths
among domains. Its primary focus is the scalability issue
for multiple domains handled by controllers from different
vendors.

B. Balancing of Controller Load

Load balanced routing for links and controller (LBR-
LC) [29] exploits a routing based algorithm and analyzes its
approximation performance. It reduces the response time of
the controller (by load bounds) and achieves link load balanc-
ing (using network area bounds). The work in [30] proposed
a method for balancing the uneven load in the control plane
by shifting load away from heavily loaded controllers. This
is achieved through switch migration. However, the migra-
tion process requires some delay during the re-configuration
of devices, especially in large scale networks. Another solu-
tion [31] works as a controller module, and switches are
connected with multiple controllers but only one controller is
connected as the master. Each controller gathers information
about its domain and compares it to that of other domains. If its
load is greater as compared to the rest of the controllers, then
it selects and migrates switches to a less loaded controller.
However, this requires extensive information about the load
and synchronization of controllers which may reduce over-
all performance. In [32] authors proposed a load balancer
application to reduce the inter controller control messages.
At the same time, the authors proposed a multi-policy con-
troller where multiple applications can control the network. As
the switch to controller mapping is static, hence a controller
may become overloaded if a large number of flows arrive.
Elasticon [18] presents an architecture where the load of a

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

334 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

controller is computed, and the controller pool can be dynam-
ically expanded and shrunk, which enhances the network
performance and throughput. In [33], the authors proposed
multi-agent reinforcement learning to balance the controller
load. It uses offline training and online decision making to
balance the workload of controllers.

C. Path Optimizations

In [34] authors propose full, partial, and heuristic path
computation optimized strategies specifically for 5G enabled
SDN-based transport network (wireless and wired), emphasiz-
ing increased QoS experience. All the proposed schemes use
linear integer programming optimization modules to recom-
pute all the available paths between the OVS switches, SDN
controller, servers, and UEs to determine the network’s optimal
configuration. There is no implementation of these algorithms,
although the paper mentions ONOS. Traditional MPLS label-
ing has been applied in [35] to improve the network resource
utilization by reducing the number of flow entries while
reducing the controller-switch communication overhead. Flow
tagging has been introduced into modified OpenFlow switches
to achieve flow-based forwarding aggregation and multipath
communication simultaneously. A flow-rule placement solu-
tion is proposed in [36] to incorporate the maximum number
of flows while locating an immediate end-to-end path. Despite
showing promising results, the solution does not consider
using a distributed controller while existed flow-rules likely to
reappear repeatedly in the controller. Path selection for egress
traffic in the stub network is presented in [37]. The solu-
tion calculates the available path’s capacity and disseminates
the traffic towards multiple paths using passive measurement
techniques. A self-developed discrete-event simulator is used
to form a client-server scenario that captures traffic in two
identical data producer networks. The performance has been
evaluated against the number of flows, their sizes, and their
arrival time.

Contrary to the above-discussed studies, in this work, we
focus on communication in multi-domain environments, with
emphasis on path load balancing, selection of egress/ingress
switches, and vertical extension to the data plane. The prin-
ciple of path load balancing is weight-based and can be
applied in both intra-domain and inter-domain communication.
Consideration to non-cooperative domains is also given when
multiple domains are involved. A major function of this work
is to extend the data plane to the perception plane, where del-
egated control functionality is placed on access devices for
multi-path multi-hop communication in a wireless environ-
ment. Recently, in [38] the authors have listed all of these
objectives as major future directions of load-balanced SDN
systems.

III. SYSTEM ARCHITECTURE

This section presents the overall architecture for the
proposed approach. The architecture can be divided into two
parts, the architecture of SDN planes, and the system model. In
the architecture of SDN planes, we elaborate on the functional-
ities of different planes, while in the system model we describe

the overall multi-domain design and different notations used
in this work. The system model is further classified into two
parts; horizontal load balancing and vertical extension. In
horizontal load balancing, the load is distributed evenly on
different links of data plane elements whereas, load balancing
between data plane elements and perception plane elements is
discussed in vertical extension.

A. Architecture of Planes

The architecture of Dolphin is aimed at large scale SDN
networks. Here, we first explain the architecture and key
components, as shown in Figure 1. It shows the high-level
architecture for both horizontal load balancing and the vertical
extension into the perception plane.

Perception Plane: At the base of the architecture lies the
perception plane, which has different end-devices and some
of these devices are connected with data plane elements by
means of different interfaces (e.g., WiFi). Traditionally, the
SDN architecture has SDN switches (capable of understand-
ing Openflow) in the data plane and disregards other end-hosts.
However, with the increase in diversity of end hosts and
a complete topological structure, the extension of the data
plane is referred to as the perception plane. The devices in
the perception plane include mobile phones, sensors, vehicles,
UAVs, or any other data generation/reception point, and may
be connected to each other via different interfaces (e.g., WiFi,
BlueTooth, NFC, ZigBee, and 5G). Nodes connected with data
plane elements (SDN Switches or vSwitches) can be detected
by the SDN controller (through SBI); however, end devices
that are connected with these nodes are beyond SDN Switch
elements and cannot be accessed by the controller. This plane
involves the vertical extension of Dolphin, however, in hori-
zontal load balancing, only data plane devices are used. The
proposed vertical extension in this work allows access and
flow installation at the perception level.

Data Plane: The data plane is above the perception plane,
which has multiple domains. Each domain has SDN enabled
(hardware or software) switches acting as forwarding nodes
and are managed by a controller (which is part of the control
plane). Connectivity among these switches enables multiple
paths among different source and destination pairs. Moreover,
border gateway switches of different domains are connected
to each other via multiple links. Network information, link
stats, and flow table updates are exchanged between controller
and switches via the southbound interface (i.e., OpenFlow
protocol).

Control Plane: The control plane in the proposed architec-
ture contains several distributed SDN controllers (potentially
from different vendors), which may or may not be connected
in some hierarchy. Controllers manage flow tables of SDN
switches under their respective domains. The SDN controller
features represent the base network functions that are executed
by the physical and virtual network managers of each con-
troller. These functions extract topology updates, link states,
and statistics (e.g., latency, packet loss ratio, and link uti-
lization). After collecting this information, the controller can
forward it to management plane applications.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION

335

_ _ _ _ Horizontal Load Balancing _ _ _]

DOLPHIN |

| Application |

Controller
Selection

FloodLight / | 1
Openbaylight

Input .
1

- Topology
Northbound Information
Interface and Link
Stats

DOLPHIN .
3 1 Controller Selection $ '
Forwarding %

Rules

| source and | | oomain
‘ Destination ‘ ‘ Information

Vertical Extension ‘

Input __|
SDN Controller (CK1)

SDN Controler (Ciz)

r--

SDN Controller (Cyy)

SDN Controler (C81)

Controller

SDN Controller (Cgg)

Source

SDN Controller (Cgy)

ves !

Destination

SDN Controller (CA1)

Domain
Information

Selection ‘
=

—

SDN Controller (Caz)

in Same
Domain,

SDN Controller (CAN)

Inter-Domain
ommunication|

1
Selection_ _1

Intra-Domain
‘ommunication|

ooo

Network
Information

Source and
Information

Network
Information

Weight
Computation

Destination
rom

End-to-End
Weight Comp.

Secondary
Controller

End-to-End
Weight Comp.

Southbound
Interface

Flow
Table
Updates

Flow
| Management

Deployment

Topology
Information
and Link
Stats

Deployment

Domain 1

Forwarding
Rules

Fig. 2. Overall system design and modules.

Management Plane: The proposed Dolphin core algorithms
can work as a management application in the management
plane, as well as an integral part of the controller. It is prefer-
able to use it as a management application, as this allows the
control plane to have multi-vendor SDN solutions. The objec-
tive is to balance the load horizontally and vertically across
the entire data and perception planes.

B. System Design and Communication Models

Horizontal load balancing is done entirely in the data plane
among different domains, while vertical balancing addition-
ally involves the perception plane. Figure 2 shows the overall
design and the working principle, along with different modules
for the horizontal and vertical extension. In this subsection, we
describe the connectivity structure of the proposed solution and
different notations used in this work.

1) Horizontal Model: Horizontal load balancing is classi-
fied into two parts: intra-domain and inter-domain. In intra-
domain balancing, the source and destination belong to the
same domain, whereas, if source and destination are in differ-
ent domains then inter-domain balancing is done. The system
model for horizontal load balancing in the proposed system
can be observed from the sample topology as shown in
Figure 3. The inter-domain network is shown at the top as
a collection of different domains connected through multiple
links. The magnified view of each domain shows the con-
trol and data plane of each. We can observe that S1-S4 are
SDN switches, which connect different end machines labeled
as HI-H3. Also, this domain has SDN switches acting as gate-
ways to other domains (GW1-GW3). Assume that the network
has D = {dy,dp,ds---d,} set of SDN domains, then the
topology graph can be represented as G = (Vd,E), where
Vi = {1)1‘1777 UQdi, vg" e vg{} represents switches of domain
d;,and E = {(u, v) : u, v € V} is a set of edges to connect V
switches. Any path between a source s and destination ¢ switch
in a domain d is represented as p; = {vsd, vld, v2d e vtd} and
p; € P where P represents a set of all shortest paths between

) < Domain 2 > (Domain N L
Rules
e o i
@ ------ .

Inter Domain Network

Domain 3 Domain N

Network Connectivity

Domain 1

Fig. 3. Topological structure used for the system model.

source and destination pairs. It should be noted that traffic
originator is a host, however, from a controller’s perspective,
it is switch from where the flow begins. Hence, we have used
switches to represent source and destination. Moreover, every
edge E has a weight W;, where j € [l — M] is a series of M
non-negative weights and cost functions which includes; link
weight, latency, and packet loss ratio to ensure the Quality of
Service (QoS). Finally, the total weight of path p; can be cal-
culated as W, = ZZZO W, where W, is weight of each link
in path p;. Figure 3 also depicts that some domains may be
connected directly (connecting through GW switches), while
others have to send traffic across other domains to reach a
particular destination. Most of these domains are connected
via multiple paths. For example, D1 is connected with D2 and
D3 through multiple links.

Formally we can define the problem as: a source vg" in

domain d; intends to communicate with vtj in domain d;,

;dj . . .
where vf", v, € Ve and path p; is said to be best optimal

path if: Wp, < Wp, where p;, p; €EPA p; # pj.
Intra-Domain Handling: The main objective of intra-
domain load balancing is to balance the traffic evenly on
different paths when source and destinatign belong to the
J

. d;
same domain. For example, let vs’ and v’ are source and

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

336 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

@ Controller @I

destination switches of domain d; and there are two pos-
sible routes among this pair, which can be represented as
vsdj — vfj — vtd 7 and vg] — vg‘j — vtdj . To find and redirect
traffic to a less loaded path, a dynamic and adequate solution
is required which is robust in determining the network state
and adjusting the flow path to optimize the load. Note that
this work’s objective is to change paths while flows are in
progress.

Inter-Domain Handling: When the source and destination
switches are in different domains (and under different con-
trollers), two scenarios can be realized as directly connected
domains or indirectly connected domains.

e Directly Connected: In this scenario, there are two or
more domains (with their independent controllers) that
are either adjacent to each other or are cooperative
domains (i.e., under the same administration). Continuing
from previous scenario, the destination switch is now
present in a different domain dj. Hence, the available

. . dj d;
paths between source destination are V) — 1t —

.) dj d;)) d;
vg" — vtd" and v’ — v, — vgl" — vtd" where v,’,
vbj are the gateway switches for domain d; and vk, vl;i’“

are the gateway switches for domain dy. It is possible that
for switch vg’ best optimal path is through v,” whereas,
for domain k optimal path for desired destination is via
switch vg k. This creates a challenging situation as one of
the domain will have to use a sub-optimal path for com-
munication. It is worth mentioning here that in SDN, a
single switch can be connected to multiple domain con-
trollers. If it is, then, one controller becomes master and
the other is a slave for that switch. Only the master con-
troller can read and write flow rules, whereas the slave
controller can only read the information to generate a
global view. Hence, a gateway switch always belongs to a
single domain (where the domain is defined by the master
controller).

o Indirectly Connected Domains: In real-world networks,
probability of intermediate domains between any source
and destination domains is very high. Hence, when the

source switch vsd 7 and destination switch vtd”, have to

communicate over domains where flow installation is not
possible, then only best-effort delivery can be guaranteed.

For example, domain d,;, is a non co-operative domain

and is not willing to share its topological information

th(;ls; the available paths between source destination are
7

d; d; d;
vg? — vy — X — v(‘li” — v, and vg' — v’ — X

d; d; .
— vgi" — v, " where v,’, v, are the gateway switches
for domain d; and v(‘f", véj" are the gateway switches for

domain d,.

2) Vertical Modeling: In order to provide the vertical load
balancing, end devices connected with perception plane ele-
ments must be visible in the global topology at the controller.
In practice, these end devices cannot be observed or accessed
by the controller because OpenFlow works only at the SDN
switch level. Our first goal is to generate the global network
view along with end devices connected in perception plane
elements. After creating the global view, the flows should be

A X ‘*s"':‘: ___________ H2~ itk

{}=D 4
. Different interfaces of L)~ 4"+ . s

\\ng__Device Conneclivit_y'_ne—"

Perception“\

1

1

1

i ,

i L ont
1

1

| Plane

1

Fig. 4. Unified structure for the vertical extension.

created which optimally connect the end devices, and then
the load must be balanced evenly on multiple paths among
them.

Figure 4 shows two SDN domains where the perception
plane is at the bottom where nl and n3 are the percep-
tion plane elements. These elements can be further connected
to different end devices (e.g., n2, n4, and n5) via different
short-range radio interfaces (Bluetooth, NFC, DSRC, etc.).
Moreover, these end devices could have multi-hop routing
when they cannot communicate with access points directly.
In this work, we provide the access points with similar capa-
bilities as SDN switches, which are connected to the other
wired-domain elements. In a communication scenario, assume
that n1 and n3 want to transfer data, then in traditional SDN
there could be different paths available, i.e., nl — APl — S2
— AP2 — n3 and nl — AP1 — S1 — AP2 — n3. However,
in this work we extend the reach of the controller to the per-
ception plane thus, making it capable of installing flows within
the wireless domain. With the knowledge of n2’s existence, a
more optimal path can be established as nl — n2 — n3. A
practical example of such systems can be found in vehicular
networks, where the same vehicle can be accessed through
different roadside units (RSU) and vehicle-to-vehicle (V2V)
communication.

IV. HORIZONTAL INTRA-DOMAIN LOAD BALANCING

In this section, we discuss load balancing among data plane
elements inside the control of a single domain. Each source
and destination pair is connected via multiple paths, as shown
in the example topology of Figure 5. Switches S1 and S4
are connected through multiple paths as; S1—S2—S4 and
S1—S3—S4. The proposed Dolphin intra-domain system runs
in the management plane and redirects traffic on the less
loaded path by re-configuring the flow table dynamically. It
is important to clarify here that, while other state-of-the-art
solutions install the flow for its lifetime, the proposed solu-
tions dynamically changes the path, if it can find a better one.
There are various sub-modules of the Dolphin system are dis-
cussed below and the complete process is given in Algorithm 1
for least weighted path selection.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 337

DOLPHIN
Intra Domain Module

Weight
Computation

Domain Flow
Information Management

Northbound Interface y

Management
Plane
<>

I SDN Controller J

Southbound Interface

Fig. 5. Intra-domain system and its sub-modules.

Domain Information Sub-Module: The main objective of
this sub-module is to generate the graph G = (V< E) which
reflects the topology of the entire domain. It obtains the
necessary information of network devices (e.g., I[P & MAC
addresses) and links (e.g., switch & port connectivity) from the
controller. It also takes a record of gateway switches connected
to its neighboring domains, which helps in inter-domain com-
munication. The current state of network elements is collected
in JSON and XML format using API interfaces of respective
controllers. Moreover, this module retrieves port statistics from
each switch of the network which helps to find the current
value of link utilization. Based on the information, this sub-
module creates the graph of the whole network and finds the
optimal paths from source to destination. Depending on the
required optimality, the shortest paths can be obtained using
Dijkstra’s algorithm.

Weight Computation Sub-Module: This sub-module calcu-
lates the weight of each link by using OpenFlow statistics.
The port statistics of each switch are provided by the topol-
ogy information sub-module, which are then used to calculate
the weight on each link. For example, the link utilization from
vsd’i to vtdi can be obtained from the real-time port statistics as
the bytes received N (t¥) during k-th time interval t.. This is
then integrated with the controller’s flow information for traffic
types. Following this, the weight of each path is computed as a
sum of each link on that path. In Figure 5, there are two paths
from S1 to S4, and each of these paths has two links. Total
weight on each path can be calculated as Wy, = > o _ We
where, W, is the weight of each link on path p; and com-
2t (Re+7Y)

L3

puted as W, = . Here, fo is the average flow

rate of i-th flow class in t, on the e-th link, v is the standard
deviation for the flow rate of i-th flow class on the e-th link,
and L is the available link capacity of the e-th link.
Finally, these weight values are used to find the optimal path
between source and destination pair, where less weight value
signifies better optimality. Moreover, the list of associated
switches is forwarded to the flow management sub-module

Algorithm 1 Intra-Domain Path Selection Process

1: procedure INTRA-DOMAIN

2 G=(V%E
3: v = {vldi,de’i,vgdi,...vgi} where Ude vtd

i e V% in

S
B

E: a set of edges from vgi to vtdi in Graph G
P;: a set of non-disjoint paths from vg" to Utdi
Wp,: a set of weight of all paths

Py: best Path

F: a set of switches to install flows

Pi — G

for each path p € P; do

TYRIN A

—_—

n
Wp, = Z We
e=0

12: end for

13: Py = min(P;, sz‘)

14: F « list of switches in Py
15: return F

16: end procedure

for flow installation. If the destination does not belong to
this domain, and the domain information sub-module has no
information for the required destination then this module will
compute and forward optimal paths from source to all of
the gateways of this domain which is further used in the
inter-domain communication module.

Flow Management: Responsibility of Flow Management
Sub-Module is to install flow entries on devices forwarded
by Weight Computation Sub-Module. It translates the path
information into OpenFlow rules and adds or removes them at
each switch. First, the new path is installed, and then the old
path is removed. Notably, the controller is a centralized entity,
thus it can be assumed that it is capable enough to undertake
the load of the system. To avoid path oscillations, a threshold
[is used relative to the p;’s capacity and can be configured
by the system administrator.

The complete process of Intra-domain load balancing is
presented in Algorithm 1 where the shortest paths are com-
puted after generating graph G for intra-domain communica-
tion. Weight values of each path are calculated by summation
of link weights of each path and the path with minimum weight
value is considered as the best path. Finally, the list of switches
coming under the best path is returned by the algorithm in
order to install the flow rules.

V. INTER-DOMAIN LOAD BALANCING AND
VERTICAL EXTENSION

This section presents horizontal load balancing and verti-
cal extension for inter-domain communication. If source and
destination belong to different domains (horizontally or ver-
tically), then inter-domain communication is required. In the
proposed solution, some of the data plane devices (such as
Access Points) are delegated partial controller functionalities
in vertical extension, thus making them sub-domain controllers
for the perception plane device groups. The communication
between the domain controller and these sub-domain con-
trollers (with delegated functions) is conceptually similar to

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

338 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

DOLPHIN
Inter Domain Module

Flow Deployment

Network Information

[]
L J
. A
€ o [End-to-End Weight Computation]
o5
5 A
; []

A
T Northbound Interface

— Y

gl

5 gI [Domain Controller 1] [
o

Southbound Interface

Domain Controller 2]

Southbound Interface

Fig. 6. Inter-domain system and its sub-modules.

inter-domain communication. As every domain controller has
the information of its domain only hence, generating a detailed
multi-domain global graph of the network becomes a chal-
lenge. Moreover, each domain controller only optimizes the
path within its domain, hence, a gateway switch selected by the
source as the optimal exit point, may not be an optimal entry
point for the neighboring or destination domain. As all the con-
trollers have equal rights within their domains, hence forming
a consensus among them is challenging. Finally, the presence
of a non-cooperative domain between source and destination
domains is an added challenge.

In horizontal load balancing, if the domain controller
receives a packet for a destination that is not under its domain,
then the packet is forwarded to the inter-domain communi-
cation module. This module uses various sub-modules and
collects information from all the controllers by using the REST
API of the respective controller to create a global view of the
complete network, thus enabling optimal inter-domain com-
munication. To generate the global view for different domains,
connectivity of gateway switches of each domain is used.
Horizontal inter-domain load balancing is classified into two
parts; directly connected domains and indirectly connected
domains. Similarly, the vertical extension also involves inter-
domain communication, as we discuss later, that the Radio
Access Network (RAN) is treated as a domain with a sub-
controller at the AP. Similar to the intra-domain dynamic path
changing principle, the paths are updated during the lifetime
of the flow. Below we discuss each of the modules in detail,
and then describe the complete process in Algorithm 2.

A. Directly Connected Domains

In directly-connected domains, gateway switches of source
and destination domains are adjacent and connected, as shown
in Figure 6. Here two different domain controllers are manag-
ing their respective domains. If there is only a single path
connecting two domains, then the process is simple. Both
domains only have to optimize the paths to the gateway
switches in their domains. However, if there is more than one
link connecting the domains, then selecting ingress and egress

Algorithm 2 Inter-Domain Path Selection Process

1: procedure INTER-DOMAIN

2 G = (Vd,E): network graph

3 Vd = set of switches of all domains

4 C%: a set of controllers for n domains
5: P;: a set of paths from s to t

6: Wp,: a set of weight for all paths
7

8

9

0

1

Py: best Path

F: a set of switches to install flows
P, —G

for each path p € P; do

n
Wp, = Z We
e=0

12: end for

13: Pb = mm(Pi, WPz)

14: F' « list of switches in Py
15: for each C e C% do

16: for each F; € F do
17: if F; € V% then
18: ct — F;

19: end if

20: end for

21: end for

22: end procedure

switches and balancing the load on multiple links is difficult.
In either case, the proposed Dolphin solution can find the
optimal path and balance the load dynamically. It is impor-
tant to note that, there can be n intermediate domains between
source and destination. If all of these domains are coopera-
tive, then we still consider the source and destination to be
directly connected. In the following subsections, we describe
the individual processes of the inter-domain module, as shown
in Figure 6.

Network Information Sub-Module: Similar to the domain
information process of the intra-domain module, the network
information sub-module also has complete information on the
data plane devices and links. This information is forwarded
to it by the controllers of respective domains as a summary
graph. When a flow is required, it first determines all possible
paths from the source switch to the destination switch and
then appends the network state information with each link.
For simplicity, assume the topology as shown in Figure 6. The
global graph G = (V' ¢, E) for these two different domains
d and d; can be designed by using following information:

dig VJ is a set of nodes in domain d;, GWilie Vi is a
set of gateways in domain d;, Ve Ve is a set of nodes in
domain dj, GW%e V% is a set of gateways in domain d;,
E%eE is a set of edges between Vd & GW%, E%eE is
a set of edges between Vh & GW % , and EdlﬂeE is a set
of edges between GW % & GW%. Once it collects all the
required information of switches and gateways from domain
controllers, it generates paths from source to destination.

End-To-End Weight Computation Sub-Module: Based on
the paths provided by the network information sub-module,
the end-to-end weight computation sub-module calculates the
weight on the individual links and sums all the weight values
to find the total weight of each path. Furthermore, it computes

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 339

the optimal path from source to destination by comparing these
weight values. Path with less weight value is considered as an
optimal path, and a list of all associated gateways and switches
coming under the best path is forwarded to the deployment
module for flow installation. The formulation is the same as
that of intra-domain weight calculation, hence we skip it for
simplicity.

Deployment Sub-Module: To install the flow entries on
switches and gateways, this sub-module communicates with
the domain controllers to provide a list of associated switches
of each domain controller. Based on this information, each
domain controller installs flow entries on each switch to estab-
lish the communication between source and destination pair.
Similar to the prior explanation, 3 can be used to avoid path
oscillations.

Algorithm 2 presents inter-domain communication where a
graph for the whole network is built by taking information
from each controller. This graph is further used to find the
shortest paths between source and destination pair. Weight val-
ues of each path are computed by summation of link weights
and path with minimum weight value is considered as the
best optimal path. Finally, the list of switches is returned to
the respective controllers to install flow rules.

B. Indirectly Connected Domains

Here we cover a scenario where the source and destina-
tion domains are connected via an intermediate domain, which
does not cooperate in a topology information exchange or flow
installation. The data plane in such a scenario is depicted in
Figure 7 where the intermediate domain has five switches
R1-R5. There can be multiple paths available, however, the
Dolphin system has no control over them.

Periodic Probes: The Network Information Sub-Module of
the inter-domain communication system periodically sends
probe messages across the intermediate non-cooperative
domain to estimate the network conditions, such as delay
and available throughput. The objective is to find the optimal
ingress and/or egress gateway from the neighboring domain.
For example, in Figure 7, the network information sub-module
sends probe packets from S2 & S3 towards dummy destina-
tions connected to S6 & S8. By observing where the probe
packet was received, it determines the potential path and its
QoS properties in the non-cooperative domain. Using this
information, this model then builds a list of paths with their
network conditions, when a flow needs to be created over the
said domain. It is important to note, that it is not possible
to dictate a specific path within the non-cooperative domain,
hence only the selection of ingress/egress switches is of impor-
tance to the proposed solution. If there is only one such pair,
then he solution does not use probes, while the frequency of
probes in the other cases is very less. From experimentation,
we have observed that these probes have no performance effect
on the links.

Flow Creation: The End-to-End Weight computation mod-
ules use the information gathered by probes, in the previous
process to estimate the weight of using a specific egress

Intermediate Domain Destination Domain

Source Domain

Fig. 7. Data plane of indirectly connected domains.

switch (e.g., S2 or S3) when finding the optimal paths, using
intra-domain formulas.

Flow Installation: The Deployment sub-module installs the
flow from the source switch to the egress switch based on the
optimal weight value as determined in the previous step (i.e.,
S2 or S3 in the example). However, it is important to install
the rest of the flow on all possible re-entry points in the next
cooperative domain. Hence, in Figure 7 the flow entries are
made on both S6 and S8, as it is not possible to determine
the behavior of the intermediate domain. Even during commu-
nication, the path may change, hence, the flow entries must
be present for continued forwarding of flow. However, this
only occurs when there are multiple gateways connecting the
intermediate domain.

C. Vertical Extension

To enable the vertical extension and allow the controllers to
have topological information beyond the SDN switches (into
the perception plane), the proposed solution creates hybrid
devices at the network access points. These devices are con-
sidered as secondary controllers, with the ability to discover
the topology and configure underlying devices only. Hence,
the partial control functions of the controller are delegated to
the APs. This scenario becomes very similar to a generic inter-
domain communication situation, with the only difference is
that the secondary controller (or delegated control device) has
limited capabilities. It is important to note, that in this solution,
we assume that the underlying perception plane devices can
communicate with each other and form an ad-hoc network.
This assumption is realistic, as V2V, M2M, and 5G com-
munication allows such multi-hoping in the mobile domain.
In our implementation and evaluation, we have achieved this
through similar programming of devices and custom wrapper
classes for forwarding rules in the routing tables. Figure 8
shows the complete topological structure and the secondary
controller’s control delegation. Here, we explain the working
of inter-domain sub-modules in relation to this delegation.

Network Information Sub-Module: This module receives the
topological information from controllers of different domains.
In addition to this, it also receives the topological information
from secondary controllers at APs. Each AP uses a special-
ized SBI for sending this information. It is important to note
that this information includes, device details, interface types
(data rate and technology), and connectivity. In the proposed
system, we have enabled all mobile devices to run a piece
of simple information reporting app, which updates the sec-
ondary controller with the desired information. After receiving
this periodic information, the AP generates a sub-graph and
sends it to the Network Information Sub-Module, where it

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

340 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

DOLPHIN
Beyond vSwitch Module

—/

Flow Deployment

48

End-to-End Weight Computation

4

> Network Information

_}r_ah_a

Northbound Interface

&

;l SDN Controller }‘

Control Control
Delegation ? Delegatlon
/ S1 \
—
AP1 A2
Stat S~ Sta2

Fig. 8. Vertical extension beyond SDN switch.

is merged with the global topology graph to find optimal
paths.

End-To-End Weight Computation Sub-Module: After com-
puting all possible paths between data plane and perception
plane elements, the weight value of each path is calculated.
Unlike horizontal load balancing, weight computation in ver-
tical extension is different because due to the" involvement of
different user level devices. Hence, W, = Zf%ewa) is used,
without any traffic class. This is because only mice flows are
allowed to traverse the perception plane links and Ré is the
average flow rate of f-th flow using that link at the measure-
ment time. Moreover, L is the leftover link capacity from a
specific shared bandwidth value allowed by the device. After
computing the best path, a list of switches is forwarded to
associated controllers and sub-controllers for configuring the
associated switches and devices, respectively.

Deployment Sub-Module: Similar to previous sections, this
module installs the flows on switches and devices. Figure 8
presents a topology where APs are working as secondary con-
trollers as well. Two mobile stations (i.e., stal and sta2) are
connected with these APs, and at the same time by using
different interfaces these stations are connected with an end
device nl. In order to transfer data between hl and nl, there
are two possible paths as S| — AP1 — Stal — nl and S1 —
AP2 — Sta2 — nl. Both the APs and SDN controller forward
all the connectivity information of their respective domains to
the network information module. Based on this information,
the global network view is generated which helps in finding
the best optimal path. After weight computation, flow entries
are forwarded to respective controllers, which then use the cus-
tomized APIs to configure the routing and forwarding tables of
the devices in the perception plane. It is important to note that
such modification to device tables is possible in the majority
of open-source systems.

VI. PERFORMANCE EVALUATION AND ANALYSIS

The performance of the proposed architecture and solution
is evaluated in several scenarios. First, we present a proof of
work, with a limited topological setup in Mininet [39] and
its fork Mininet-WiFi [40] to evaluate the soundness of the
approach. However, as this is only proof of concept and must
be translated to real applications, in the second set of exper-
iments, we implement the solution in a data center network
scenario with multiple controllers to evaluate the flow comple-
tion times. This is a multi-domain environment with a diverse
set of data traffic. Finally, we evaluate the extended perception
plane architecture in a 5G vehicular network scenario to show
the flow completion and path changes in a highly dynamic
topology.

A. Proof of Concept

To evaluate the basic working principle of the Dolphin solu-
tion we have evaluated it in 4 different scenarios. The network
is modeled in Mininet and Mininet-WiFi to mimic the 5G
access, edge, and core networks. It is important to note here,
that the objective of this work is not to evaluate 5G commu-
nication, rather we evaluate the effect of multi-domain SDN
in a 5G environment.

In our evaluations, we have used OpenDayLight (ODL) [41]
Beryllium-SR4 and FloodLight (FL) [42] controllers, both
written in JAVA. FloodLight is a modularized and extensi-
ble controller with large community-based support. It uses the
OpenFlow protocol to orchestrate flows in the SDN environ-
ment. OpenDaylight, on the other hand, provides extensive
flexibility in a distributed environment. It is a collection
of OSGi bundles that run as Apache Karaf components.
Additionally, we deploy the extended Dijkstra’s algorithm
proposed in mED-SDN [26] to compare our work regard-
ing performance metrics such as RTT and link utilization.
Although the performance evaluation for both works has
been initialized in the Mininet-based test environment, the
performance evaluation of [26] was limited to Abilene as the
testbed topology, and ODL as a centralized controller. It is
important to note that only ODL provides multi-controller
support, hence the evaluation has been limited to it in the
inter-domain experiments. Moreover, switch migration solu-
tions are not comparable to the proposed multi-domain/vertical
extension solution. Dolphin is implemented as a Python appli-
cation and uses REST APIs as the northbound interface. The
simulation parameters are listed in Table II, and the hosts
only generate the traffic and are not considered for weight
calculations.

1) Intra-Domain Communication: The initial scenario con-
sists of a single SDN controller which can be realized as shown
in Figure 9. There are four switches and two hosts connected at
switches S1 and S3, respectively. It can be observed that there
are two possible paths between the source and the destination.
This scenario determines if the proposed solution can main-
tain the optimal path and redirect traffic on a less loaded path
dynamically. The main evaluation parameters in this scenario
are the Round Trip Time (RTT) and the link utilization of dif-
ferent paths when H1 transfers data to H2. Figure 10 presents

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 341

TABLE 11
SIM. PARAMETERS FOR PROOF-OF-CONCEPT EXPERIMENTS

Parameter Value
Platform Mininet (with OVS), Mininet-WiFi
Topology Figs. 9, 12a, 13a

Link bandwidth 10 Gbps
Observed flow (UDP)

Domain traffic (UDP)

Traffic types

Host pairs 1 per topology
Flow rate 50 per sec
Per flow data rate 50 Mbps
Link latency 2 us

Simulation time 20 sec. (without setup)

Intra-domain topology.

L
0.08 B - SDN 16
- DOLPHIN

— L
B mED-SDN
- DOLPHIN

Average RTT (ms

1 2 3 4 5 1 2 3 4 5
No. of lterations. No. of Iterations

(a) Minimum RTT. (b) Average RTT.

N » o

— L
B mED-SDN
B DOLPHIN

°

— L d
[mED-SDN
I DOLPHIN

Maximum RTT (ms)
P

o =« N w

1

3 4 5
No. of lterations

(d) Mean Deviation of RTT.

3
No. of Iterations

(c¢) Maximum RTT.

Fig. 10. RTT for intra-domain using FloodLight.

the minimum, average, maximum, and mean deviation RTT
against floodlight controller and mED-SDN, while Figure 11
shows the link utilization against different controllers. The
experiments have been repeated 10 times, and average results
are presented.

It can be observed from Figure 10, that there is a minor
difference in minimum RTT between FloodLight controller,
mED-SDN, and Dolphin. Average RTT is more than 1.5 ms
with FloodLight controller whereas, mED-SDN performs bet-
ter as compared to Floodlight and takes 0.3 ms to 0.6 ms.
Dolphin outperforms both of the existing solutions and gives
0.25 ms average RTT. Similarly, maximum RTT is less than

——— W DOLPHIN P1
W DOLPHIN P2 80
W/O DOLPHIN P1
W/O DOLPHIN P2
mED-SDN P1
mED-SDN P2

jb\/N\/\/\/\J
SN\

0= T T T T T T - T T T
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Time (sec.) Time (sec.)

(a) Against ODL and mED-SDN. (b) Against FloodLight.

W DOLPHIN P1
W DOLPHIN P2

W/O DOLPHIN P1
——— W/O DOLPHIN P2

Link Utilization Percentage (%)
Link Utilization Percentage (%)

- —— = 0

Fig. 11. Link utilization for intra-domain module.

1 ms, and the mean deviation is less than 0.3 ms with the
proposed solution.

To compute link utilization on all possible paths from source
to destination, we created two applications. One application
generates the observed data flow, while the other generates
random traffic across the network to model load on links. It
can be observed from Figure 11 that without Dolphin the usage
of the initial path is maximum, whereas the second path is
neglected by using the OpenDaylight controller. For example,
path P1 is overloaded with more than 50% utilization, whereas
usage of path P2 is zero for the observed flow. It is important
to note that the load generating application directs traffic ran-
domly on the different links, hence it is not possible that the
other path is overloaded with it. Similar to ODL, mED-SDN
results show that its behavior is almost similar. Contrary to
these, the proposed algorithm dynamically switches the path
of the observed flow and utilizes both the links evenly. It can be
seen that the link utilization is less than 30% for the observed
flow on both links. Similarly, when the Floodlight controller
is used, link utilization of one path is more than 70% and
the other link is not being used at all. However, both of these
links are being used to transfer data after running Dolphin and
overall link utilization has been reduced for the observed flow.
Notably, due to multiple cost functions of weight value, there
is no link flapping while Dolphin is used.

2) Communication Among Directly Connected Domains:
The scenario to evaluate inter-domain (but directly connected)
load balancing is shown in Figure 12(a). It can be seen that
there are multiple paths from the source domain to the des-
tination domain, and within each domain, there are multiple
paths from the egress/ingress switch to the destination switch.
It is important to note that we have evaluated this using ODL
only, as the Floodlight controller is entirely centralized, and
does not work with multiple domains. Figure 12(b) presents
the performance of Dolphin in terms of link utilization. It is
evident that without the use of any load balancing system,
the initially selected path is utilized throughout the duration
of flow, while the other path has free bandwidth available.
However, with the use of the proposed algorithms, both of the
paths are utilized at the rate of 30% to 40% by the observed
flow. Reduction of link utilization and load on both links
proves that the load is distributed evenly and resources are
being utilized efficiently.

3) Communication Among Indirectly Connected Domains:
The third scenario uses almost the same topology as in the

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

342 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Source Domain Destination Domain

(a) Topology in directly connected domains.

100

W DOLPHIN P1
W DOLPHIN P2
70 W/O DOLPHIN P1
——— WIO DOLPHIN P2

Link Utilization Percentage (%)

2 4 6 8 10 12 14 16 18 20
Time (sec.)

(b) Link utilization with ODL.

Fig. 12.

Inter-domain topology and link utilization.

Destination Domain

Source Domain Intermediate Domain

(a) Topology in indirectly connected domains.
35 T T T

W DOLPHIN P1

W DOLPHIN P2

30 W/O DOLPHIN P1
WIO DOLPHIN P2

Link Utilization Percentage (%)

2 4 6 8 10 12 14 16 18 20
Time (sec.)

(b) Link utilization with ODL.

Fig. 13. Indirectly connected domains and link utilization.

previous experiment, but with an intermediate domain as
presented in Figure 13(a). This intermediate domain does not
provide any internal topological information and does not
allow the proposed scheme to install paths on its switches.
However, it uses a heuristic approach for the flows to transit
through its network. For simplicity, we assume that the possi-
ble paths for observed flow are P1 and P2. Furthermore, the
intermediate domain has some internal traffic so that the flows
are disrupted. Figure 13(b) presents the link utilization for
indirectly connected domain scenario. Due to changes in the
uncontrolled intermediate domain, both links are used with-
out applying Dolphin but this utilization is less than 5%. It
is important to note that the link utilization shown here does
not include the path-segment from within the non-cooperative
intermediate domain. Hence, the links from H1 to egress of
source domain (switch 4) and then switch 8 to H4 are the

segments which are measured, which remains low due to the
generic method. However, link utilization is improved for the
observed flows to 10% after running Dolphin.

4) Communication Among Data Plane and Perception
Plane Elements: Particularly for this scenario, we have used
Mininet-WiFi to enable wireless communication. Mininet-
WiFi is a fork to Mininet and extends its functionality by
adding different classes to support stations and access points.
In order to delegate control, we have modified Mininet-WiFi
where an AP can act as a sub-controller. Moreover, the mobile
stations are also made capable of interacting with controllers
through a specialized SBI. Figure 14(a) presents the topol-
ogy used for this scenario. Due to the delegation of controller
functionalities to access points, it becomes an inter-domain
communication. To evaluate vertical extension, we compute
delay and evaluate by comparing the performance of a cus-
tom controller (i.e., secondary controller) and performance of
directly connected domains in Mininet-WiFi.

Moreover, Figure 14 shows the delay with the custom and
normal controller. The custom controller presents the delay
when control is delegated to data plane elements to handle
the perception plane. Whereas, normal controller delay shows
a traditional SDN controller to handle data plane elements.
Figure 14(b) presents delay when both of these controllers han-
dle only 2 nodes. In Figures 14(c) and 14(d) number of nodes
are increased by one. In all three cases, the delay with custom
controller and normal controller is almost similar, which shows
that after control delegation no additional delay is introduced.
The controller load is presented in Figure 15, where load is
computed by using number of requests sent by each switch.
It can be noticed that load is reduced slightly when control is
delegated to data plane elements by using Dolphin. As commu-
nication among different devices at perception plane is handled
by data plane elements which also work as controller thus, it
reduces the load over the main controller.

B. Multi-Domain Datacenter Communication

We have implemented the proposed Dolphin algorithm in a
simulated environment using Mininet and then raw data out-
put has been processed in MATLAB to evaluate scalability,
response to realistic traffic, and overall performance.

The network topology is designed to represent a 4-post leaf-
spine architecture, with a core router at the top, as shown in
Figure 16(a). The whole network consists of 4 such clusters as
shown in Figure 16(b). Each cluster mimics a domain, where
the controller is running at the core router. The workloads
used in experimentation are similar to the one in litera-
ture [43]-[45], which are derived from actual data centers.
We use three different types of services: Web search, Data
mining, and Hadoop. The traffic distribution of these services
is shown in Figure 17. Each server in topology initiates con-
nections for destinations in rack, in cluster, and cross-cluster
with even distribution. The service type is also uniformly dis-
tributed for connections. All flows have associated completion
deadlines. As part of the experiment, we have enabled the
Dolphin algorithm to prioritize the flow installation of those
flows which have higher priority (i.e., shorter deadline).

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION

p N
£ klé/ﬁ s2 |) 06
N
7 APt Q g L2 %
¢ station 1 H1 H2 Station 2 o4r
Rz oy b 4
g o/ -
L n3 n4;”
p&@ B "N - o
e == N !

(a) Vertical extension topology.

343

I v Normal Controlier
[w Custom Controller

3
No. of lterations

(b) 2 Nodes

[w Normal Controller
[w Custom Controller

Delay (ms)

3
No. of Iterations.

(¢) 3 Nodes

S w Normal Controller
14 [Custom Controller

Delay (ms)

3
No. of lterations

(d) 4 Nodes

Fig. 14. Topology and average delay with different number of nodes in the vertical extension. Delay is measured end-to-end.

=]
3

| Avg. wio Dolphin__

Avg. Flow Requests per Sec.
@
g

5 10 15
No. of

[/o DOLPHIN
[v DOLPHIN

20 25 30 35
Switches

Fig. 15. Controller load with vertical extension.
TABLE III
SIM. PARAMETERS FOR DATACENTER EXPERIMENTS
Parameter Value
Topology 4-Post Leaf-Spine (Fig. 16)
Core routers 4
Clusters/Domains 4

Spin switches

4 per cluster

Leaf ToR switches

8 per cluster

Spine
Switches

CLUSTER

Non Co-operative Domain

(a) Cluster Topology.

(b) Core connecting 4 clusters.

Fig. 16. Topological connectivity of data center.

..... Web Search
Hadoop
0.8F eeeeeen Data Mining

i

Flow Size (bytes)

Fig. 17. Traffic distribution of three services for simulation.

Worker servers 8 per rack
Link capacity 10 Gbps

Link latency 2 us
Non-coop. domain Cluster 3 (Fig. 16b)
Max host pairs 7680

Traffic types 3 (Fig. 17)

Flow rate
Simulation time

30 per worker
30 sec. (without setup)

We have evaluated the performance of Dolphin in terms
of the Flow Completion Times (FCT) as the main metric for
comparison. We show the Normalized FCT for small flows,
large flows, and for 990 percentile. The simulation parameters
are listed in Table III

The normalized flow completion times for all flows aggre-
gated is shown in Figure 18. The overall FCT in Figure 18(a)
shows a clear improvement in reaching deadlines within the
given amount of time. At lighter loads on the network,
the FCTs are comparable for all the controllers, but as the
load on the network increases the congestion also increases.
Figures 18(b) & 18(c) show mice flow completion as aver-
age, and at 99" percentile (note the change in scale). The
performance increase is quite evident especially with a high
number of connections in the topology against generic ODL.
The large throughput sensitive flows also show improved com-
pletion time of orders of magnitude more in Figure 18(d).

The load balancing of new flows (for congested destinations)
helps in reducing the congestion quickly at intermediate points,
while the existing flows are switched to paths with less load.
The knowledge of the network state helps in picking the appro-
priate path and dynamically change it using Dolphin. When
Dolphin is made priority aware, it dynamically adjusts the
flows for shorter deadline flows before the other regular flows.
Hence, they experience better FCT as compared to the rest.
Figure 19 shows the completed flows within their dead-
lines and the average link utilization of the network within
the rack, within the cluster (ToR to spine), and across the
cluster. Figure 19(a) shows the percentage of completed flows
within deadlines at different locations of the network. The
performance of flows within the rack is almost similar in each
case, as the possible paths are short and not many congested
points are available. It becomes more prominent in cross-
cluster communication and within the cluster, where there
may be more congestion points. Dolphin has shown to com-
plete 99.5% of the flows within the deadline. In Figure 19(b)
we show the average utilization of the links, which gives an
estimation of the load balancing through the minimum and
maximum deviations. It needs to be clarified here, that the

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

344 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Optimal
DOLPHIN ——— DOLPHIN
35 DOLPHIN-Priority 35 DOLPHIN-Priority
L ——onL

3 3
2 2
15 15

0 20 3 4 5 60 70 8 90 0 20 3 40 50 60 70 80 90
Load (%) Load (%)

(a) Overall (b) (0,100KB]:Avg

Optimal

—— o

Normalized FCT
Normalized FCT

\

Optimal
———DOLPHIN
DOLPHIN-Priority

— __—

10 20 30 40

DOLPHIN-Priority
DL

Normalized FCT
Normalized FCT

60 70 80 90 10 20 30 40 60 70 80 90

50 50
Load (%) Load (%)

(c) (0,100KB]:99'" Percentile (d) (10MB,0):Avg

Fig. 18. Normalized FCTs for all services.

105

I DOLPHIN-Priorty
B DOLPHIN

Dolphin-Priory
oo 9 hin

Dolp
E=onL
100

Deadiines(%)
o @
8 8

Avg. Link Utilization (%)

®
&

In-Cluster X-Cluster In-Rack In-Cluster

Network Links

X-Cluster
Flow Destination

(a) Completed flows in deadline. (b) Average link utilization.

Fig. 19. Flow completion and link utilization percentage.

error lines are depicting minimum and maximum deviation in
link utilization from the average. We can observe that the devi-
ation is less when Dolphin is used, and more when generic
ODL is working. Moreover, the overall link utilization for
ODL is also less as compared to the Dolphin solution.

C. 5G Vehicular Network

In this section, we evaluate the performance of the proposed
scheme for the vertical extension in 5G vehicular network
environment. 5G networks extended for vehicular communica-
tion are also similar to inter-domain communication, where the
Road Side Units (RSUs) connected through next-generation
Node-B (gNB) to edge clouds [46]. These clouds are highly
programmable and can have their own controllers. However,
the controller can only view the gNB, while the percep-
tion plane (RSUs and vehicles with V2X communication) is
not visible (or programmable). Hence, in this experiment we
model the vertical extension of Dolphin, enable V2I and V2V
communication [47]. It is important to note, that the objective
is not to evaluate the 5G communication, but use a 5G envi-
ronment to model the connectivity of V2V and V2I systems.
Hence, we have used a hybrid modeling environment. The

TABLE IV
SIM. PARAMETERS FOR VEHICULAR NETWORK EXPERIMENTS

Parameter Value
Platform Mininet-WiFi, NS-3
Topology Trace data [49]
Edge Clouds/Domains 3

RSUs 10 per cloud
Ingress/Egress RSUs 3 per cloud
No. of vehicles 53

RSU Range 100 m

No. of Flows 10-500

Simulation time 30 sec. (without setup)

IS

DOLFHIN DOLPHIN
oL obL

=~ o > ~

Normalized FCT

Avg. Path Changes per Flow (rounded)

10 100 200 300 400 500 10 100 200 300 400 500
No. of Flows No. of Flows

(a) Average FCT. (b) Average path changes.

Fig. 20. Perf. of vertical extension using vehicular network.

topology and connectivity has first been built using NS-3 [48],
and then time-stamped connectivity and data rate statistics of
vehicles have been ported to Mininet-WiFi, where the hosts
are modeled based on these input parameters. In Figure 20 we
show the FCT and average path changes of topology, which
has 3 edge clouds (i.e., domains) and parameters as shown in
Table IV. For simplicity, all domains are cooperative.

Figure 20(a) shows the normalized FCT of all flows. It
can be observed that by using the vertical extension of the
proposed scheme, we can improve the completion times, as
the flows within the V2X communication can be programmed
and dynamically optimized. In Figure 20(b) we present the
number of average path changes with the increasing number
of flows. It is important to note that once the path is selected
in traditional controllers it is not changed until the flow com-
pletes. Hence, ODL has only 1 path per flow. However for the
proposed solution, as there are a number of flows, the pos-
sible path changes become more frequent. It is obvious that
more path changes will mean more control information pack-
ets (flow installation packets) in the network. However, given
the clear improvement in flow completion times, we believe
that the control overhead is acceptable.

VII. CONCLUSION

In real-world networks, redundant paths are available
between any pair of communicating devices, especially when
they exist in different network domains. In most of the sce-
narios, these network resources in terms of link utilization
are wasted because the flows are not dynamically managed.
In this work, we have proposed a dynamic solution for SDN
controllers which load balances the flows among multiple links
dynamically across different domains. Furthermore, it also pro-
vides better resource utilization in case of an intermediate

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

LATIF et al.: DOLPHIN: DYNAMICALLY OPTIMIZED AND LOAD BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION

domain which is not co-operative. The solution gives dynamic
control over network elements beyond the traditional virtual
switches, in the perception plane, such as IoT devices, sensors,
and mobile stations. Moreover, the algorithms developed in
this work are also applied to vehicular communication, which
is yet another example of an extended perception plane with
unique requirements and different domains. The experimen-
tal results first establish that the solution is viable through
a simple testbed, and then rigorous testing on the data cen-
ter environment and 5G vehicular network further prove its
capabilities.

Several future research directions can be taken for the
work proposed in this article. The extension of perception
plane devices may include different physical communica-
tions standards and their tight integration into the topological
graph and Openflow data can be an interesting optimization.
Similarly, intelligent flow rule modification at the access
points, and understanding of Openflow can prove to be ben-
eficial. Currently, the interfacing APIs between the master
controller and delegated-control devices only work for the
designed system. These APIs can be further extended and
standardized to be more capable. Implementation of similar
work in the UAV domain is also possible and may prove to
be extremely valuable, and further experimentation can also
be beneficial to evaluate performance.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[2] H. Kim and N. Feamster, “Improving network management with
software defined networking,” I[EEE Commun. Mag., vol. 51, no. 2,
pp. 114-119, Feb. 2013.

[3] S. Saraswat, V. Agarwal, H. P. Gupta, R. Mishra, A. Gupta, and T. Dutta,
“Challenges and solutions in software defined networking: A survey,” J.
Netw. Comput. Appl., vol. 141, pp. 23-58, Sep. 2019.

[4] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, “A com-
prehensive survey of interface protocols for software defined networks,”
J. Netw. Comput. Appl., vol. 156, Apr. 2020, Art. no. 102563.

[5] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69-74, Mar. 2008.

[6] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3-14, Sep. 2013.

[7]1 C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15-26.

[8] M. Karakus and A. Durresi, “A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),” Comput. Netw.,
vol. 112, pp. 279-293, Jan. 2017.

[91 K. Kuroki, M. Fukushima, M. Hayashi, and N. Matsumoto,

“Redundancy method for highly available OpenFlow controller,” Int.

J. Adv. Internet Technol., vol. 7, no. 1, pp. 114-123, 2014.

T. Koponen et al., “Onix: A distributed control platform for large-

scale production networks,” in Proc. USENIX Conf. Oper. Syst. Design

Implement., 2010, pp. 351-364.

T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, ‘“Multi-controller

based software-defined networking: A survey,” IEEE Access, vol. 6,

pp. 15980-15996, 2018.

L. Zhu et al., “SDN controllers: A comprehensive analysis and

performance evaluation study,” ACM Comput. Surveys, vol. 53, no. 6,

pp. 140, Dec. 2020.

S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking

for Internet of Things: A survey,” IEEE Internet Things J., vol. 4, no. 6,

pp. 1994-2008, Dec. 2017.

I. Alam et al., “A survey of network virtualization techniques for Internet

of Things using SDN and NFV.,” ACM Comput. Surveys, vol. 53, no. 2,

pp. 1-40, 2020.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

345

N. Gude et al., “NOX: Towards an operating system for networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105-110,
Jul. 2008.

(2017). POX. Accessed: Oct.
https://github.com/noxrepo/pox
A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for OpenFlow,” in Proc. Internet Netw. Manag. Conf. Res. Enterprise
Netw., 2010, p. 3.

A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: An elastic distributed SDN controller,” in Proc. ACM/IEEE
Symp. Archit. Netw. Commun. Syst., Oct. 2014, pp. 17-27.

S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proc. Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 19-24.

H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic load-
balanced routing in OpenFlow-enabled networks,” in Proc. IEEE 27th
Int. Conf. Adv. Inf. Netw. Appl., Mar. 2013, pp. 290-297.

A. M. Al-Sadi, A. Al-Sherbaz, J. Xue, and S. Turner, “Routing algorithm
optimization for software defined network WAN,” in Proc. Al-Sadeq Int.
Conf. Multidiscipl. IT Commun. Sci. Appl., May 2016, pp. 1-6.

M. F. Ramdhani, S. N. Hertiana, and B. Dirgantara, “Multipath rout-
ing with load balancing and admission control in software-defined
networking (SDN),” in Proc. 4th Int. Conf. Inf. Commun. Technol.,
May 2016, pp. 1-6.

A. Khaliq, S. H. Adil, and J. Jamshid, “Enhancing throughput and load
balancing in software-defined networks,” in Proc. Int. Conf. Comput.
Math. Eng. Technol., Mar. 2018, pp. 1-6.

D. Adami, S. Giordano, M. Pagano, and G. Portaluri, “A novel SDN
controller for traffic recovery and load balancing in data centers,” in
Proc. IEEE Int. Workshop Comput. Aided Model. Design Commun. Links
Netw., Oct. 2016, pp. 77-82.

Y.-L. Lan, K. Wang, and Y.-H. Hsu, “Dynamic load-balanced path
optimization in SDN-based data center networks,” in Proc. 10th Int.
Symp. Commun. Syst. Netw. Digit. Signal Process., Jul. 2016, pp. 1-6.
A. Abdulaziz, E. A. Adedokun, and S. Man-Yahya, “Improved extended
Dijkstra’s algorithm for software defined networks,” Int. J. Appl. Inf.
Syst., vol. 12, no. 8, pp. 22-26, 2017.

S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in
software defined networks,” in Proc. IEEE Int. Conf. Comput. Commun.
(INFOCOM), Apr. 2013, pp. 2211-2219.

J. Wang, G. Shou, Y. Hu, and Z. Guo, “A multi-domain SDN scalability
architecture implementation based on the coordinate controller,” in Proc.
Int. Conf. Cyber Enabled Distrib. Comput. Knowl. Disc., Oct. 2016,
pp- 494-499.

H. Wang, H. Xu, L. Huang, J. Wang, and X. Yang, “Load-balancing
routing in software defined networks with multiple controllers,” Comput.
Netw., vol. 141, pp. 82-91, Aug. 2018.

W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing mech-
anism for distributed controllers in software-defined networking,” in
Proc. Int. Conf. Measuring Technol. Mechatronics Autom., Feb. 2018,
pp- 259-262.

Y. Zhou et al., “A load balancing strategy of SDN controller based on
distributed decision,” in Proc. IEEE Int. Conf. Trust Security Privacy
Comput. Commun., Sep. 2014, pp. 851-856.

K. Hikichi, T. Soumiya, and A. Yamada, “Dynamic application load
balancing in distributed SDN controller,” in Proc. 18th Asia—Pac. Netw.
Oper. Manag. Symp., Oct. 2016, pp. 1-6.

P. Sun, Z. Guo, G. Wang, J. Lan, and Y. Hu, “Marvel: Enabling
controller load balancing in software-defined networks with multi-
agent reinforcement learning,” Comput. Netw., vol. 177, Aug. 2020,
Art. no. 107230.

M. Bagaa, D. L. C. Dutra, T. Taleb, and K. Samdanis, “On SDN-
driven network optimization and QoS aware routing using multiple
paths,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4700-4714,
Jul. 2020.

Z. Dulifiski, G. Rzym, and P. Chotda, “MPLS-based reduction of
flow table entries in SDN switches supporting multipath transmission,”
Comput. Commun., vol. 151, pp. 365-385, Feb. 2020.

S. Bera, S. Misra, and A. Jamalipour, “FlowStat: Adaptive flow-rule
placement for per-flow statistics in SDN,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 3, pp. 530-539, Mar. 2019.

P. R. Torres, Jr., A. Garcia-Martinez, M. Bagnulo, and E. P. Ribeiro,
“Bartolomeu: An SDN rebalancing system across multiple interdomain
paths,” Comput. Netw., vol. 169, Mar. 2020, Art. no. 107117.

M. Hamdan et al., “A comprehensive survey of load balancing tech-
niques in software-defined network,” J. Netw. Comput. Appl., vol. 174,
Oct. 2020, Art. no. 102856.

25, 2020. [Online]. Available:

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

346 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

[39] (2015). Mininet: An Instant Virtual Network on Your Laptop (or Other
PC). Accessed: Oct. 25, 2020. [Online]. Available: http://www.mininet.
org/

(2017). MiniNet-WiFi: Emulator for Software-Defined Wireless
Networks. Accessed: Oct. 25, 2020. [Online]. Available: https://github.
com/intrig-unicamp/mininet-wifi

Opendaylight: A Linux Foundation Collaborative Project. Accessed:
Oct. 25, 2020. [Online]. Available: https://www.opendaylight.org
(2014). Project FloodLight. Accessed: Oct. 25, 2020. [Online].
Available: https://github.com/floodlight/floodlight

M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 4, pp. 63-74, Aug. 2010.

A. Munir et al., “Minimizing flow completion times in data centers,”
in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2013,
pp. 2157-2165.

M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 435-446,
2013.

“View on 5G architecture,” Working Paper, 5G PPP Archit.,
Valencia, Spain, Jun. 2019. [Online]. Available: https://5g-ppp.eu/
wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_
v3.0_PublicConsultation.pdf

W. B. Jaballah, M. Conti, and C. Lal, “Security and design requirements
for software-defined VANETS,” Comput. Netw., vol. 169, Mar. 2020,
Art. no. 107099.

(2020). Network Simulator (NS-3). Accessed: Oct. 25, 2020. [Online].
Available: https://www.nsnam.org/

Y. Zheng. (2011). T-Drive Trajectory Data Sample. Accessed:
Oct. 25, 2020. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/t-drive-trajectory-data-sample/

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]

(491

Zohaib Latif received the B.S. degree in electri-
cal engineering and the M.S. degree in electrical
and electronics engineering from the University of
Glasgow, U.K., in 2006 and 2008, respectively, and
the Ph.D. degree from the School of Computer
Science, Beijing Institute of Technology, Beijing,
China. Since 2011, he has been working as a Senior
Lecturer with Beijing Institute of Technology. He
is currently working as an Assistant Professor with
the Department of Computing, Riphah International
University, Faisalabad Campus. His major interests
are in software-defined networks (SDN), distributed controllers in SDN, and
Internet of Things.

Kashif Sharif (Senior Member, IEEE) received the
M.S. degree in information technology from the
National University of Sciences and Technology,
Pakistan, in 2004, and the Ph.D. degree in comput-
ing and informatics from the University of North
Carolina at Charlotte, Charlotte, NC, USA, in 2012.
He is currently an Associate Professor for research
with Beijing Institute of Technology, Beijing, China.
His research interests include data centric networks,
blockchain and distributed ledger technologies, wire-
less and sensor networks, software-defined networks,
and 5G vehicular and UAV networks. He is serves as an Associate Editor
for IEEE ACCESS. He also serves on several TPCs of IEEE and ACM
conferences.

Fan Li (Member, IEEE) received the B.Eng.
and first M.Eng. degrees in communications and
information system from Huazhong University of
Science and Technology, Wuhan, China, in 1998
and 2001, respectively, the second M.Eng. degree
in electrical engineering from the University of
Delaware, Newark, DE, USA, in 2004, and the Ph.D.
degree in computer science from the University of
North Carolina at Charlotte, Charlotte, NC, USA, in
2008. She is currently a Professor with the School of
Computer Science, Beijing Institute of Technology,
Beijing, China. She has more than 100 publications in reputed journals and
conferences. Her current research focuses on wireless networks, ad hoc and
sensor networks, and mobile computing. Her papers have won Best Paper
Awards from IEEE MASS in 2013, IEEE IPCCC in 2013, ACM MobiHoc
in 2014, and Tsinghua Science and Technology in 2015. She is a Member of
the ACM.

Md Monjurul Karim received the B.Eng
and M.Eng degrees in computer science from
Northwestern ~ Polytechnical ~ University, Xian,
China, and is currently pursuing the Ph.D.
degree in computer science and technology with
Beijing Institute of Technology, Beijing, China.
His research interests include software-defined
networking, information-centric networking, named
data networks, and next-generation networking.

Sujit Biswas (Member, IEEE) received the M.Eng.
degree in computer engineering from Northwestern
Polytechnical University, China, in 2015, and the
Ph.D degree in computer science and technol-
ogy from Beijing Institute of Technology, China.
He is also an Assistant Professor with the
Computer Science and Engineering Department,
Faridpur Engineering College, University of Dhaka,
Bangladesh. His basic research interest is in Internet
of Things, blockchain, mobile computing security
and privacy, big data, machine learning, and data
driven decision making.

Madiha Shahzad (Member. IEEE) received the
M.S. degree in information technology from the
National University of Science and Technology,
Pakistan, in 2004, and the Ph.D. degree in com-
puter science from the University of the West of
England, U.K,, in 2012. She is currently working as
an Associate Lecturer and as a Postdoctoral Scholar
with the School of Sciences, UCLan Cyprus. She
has actively participated in several EU FP6/FP7
Research Projects and authored numerous peer-
reviewed journal publications, conference papers,
and book chapters. Her current research interests include evolving telecom-
munication systems especially 5G, Internet of Things, QoS aspects, and the
considerations of responsible research and innovation in these domains.
Saraju P. Mohanty (Senior Member, IEEE)
received the bachelor’s degree (Hons.) in electrical
engineering from Orissa University of Agriculture
and Technology, Bhubaneswar, in 1995, the mas-
ter’s degree in systems science and automation
from the Indian Institute of Science, Bengaluru, in
1999, and the Ph.D. degree in computer science and
engineering from the University of South Florida,
Tampa, in 2003. He is currently a Professor with
the University of North Texas. His research is in
“Smart Electronic Systems” which has been funded
by National Science Foundations, Semiconductor Research Corporation, U.S.
Air Force, IUSSTF, and Mission Innovation. He has authored 350 research
articles, four books, and invented four granted and one pending patents.
His Google Scholar H-index is 38 and i10-index is 147 with 6500 cita-
tions. He is regarded as a Visionary Researcher on smart cities technology
in which his research deals with security and energy aware, and AI/ML-
integrated smart components. He introduced the secure digital camera in
2004, with built-in security features designed using hardware-assisted secu-
rity or security by design principle. He is widely credited as the designer
for the first digital watermarking chip in 2004, and first the low-power digi-
tal watermarking chip in 2006. He is a recipient of 12 best paper awards,
Fulbright Specialist Award in 2020, IEEE Consumer Technology Society
Outstanding Service Award in 2020, the IEEE-CS-TCVLSI Distinguished
Leadership Award in 2018, and the PROSE Award for Best Textbook in
Physical Sciences and Mathematics Category in 2016. He has delivered ten
keynotes and served on nine panels at various international conferences. He
has been serving on the editorial board of several peer-reviewed international
journals, including IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,
and IEEE TRANSACTIONS ON BIG DATA. He is the Editor-in-Chief of the
IEEE Consumer Electronics Magazine (MCE). He has been serving on the
Board of Governors of the IEEE Consumer Technology Society, and has
served as the Chair of Technical Committee on Very Large Scale Integration,
IEEE Computer Society from 2014 to 2018. He is the Founding Steering
Committee Chair for the IEEE International Symposium on Smart Electronic
Systems, the Steering Committee Vice-Chair of the IEEE-CS Symposium
on VLSI, and the Steering Committee Vice-Chair of the OITS International
Conference on Information Technology. He has mentored two Postdoctoral
researchers, and supervised 12 Ph.D. dissertations, 26 M.S. theses, and 10
undergraduate projects.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 24,2022 at 09:09:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

