
Journal of Network and Computer Applications 156 (2020) 102563

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Review

A comprehensive survey of interface protocols for software defined
networks
Zohaib Latif a, Kashif Sharif a,b,∗, Fan Li a,b,∗∗, Md Monjurul Karim a, Sujit Biswas a,
Yu Wang c

a School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
b Beijing Engineering Research Center of Massive Language Information Processing and Cloud Computing Application, Beijing, China
c Department of Computer and Information Sciences, Temple University, Philadelphia, USA

A R T I C L E I N F O

Keywords:
Software defined networks
SDN interfaces
Southbound interface
Northbound interface
East/westbound interface

A B S T R A C T

Software Defined Network implementation has seen tremendous growth and deployment in different types of
networks. Compared to traditional networks it decouples the control logic from network layer devices and cen-
tralizes it for efficient traffic forwarding and flow management across the domain. This multi-layered architec-
ture has data forwarding devices at the bottom in the data plane, which is programmed by controllers in the
control plane. The high-level management plane interacts with the control plane to program the whole network
and enforce different policies. The interaction among these planes is done through interfaces that work as com-
munication/programming protocols. In this survey, we present a comprehensive study of these interface and
programming protocols, which are primarily classified into southbound, northbound, and east/westbound inter-
faces. This work first classifies each of them into subcategories and then presents a comprehensive comparative
analysis. As the different interfaces have different properties, hence, the sub-classification and their analysis are
done using different properties. In addition, we also discuss the impact of different virtualization techniques,
such as hypervisors, on interface protocols and inter-plane communication. More over specialized interfaces for
emerging technologies such as the Internet of Things and wireless sensor networks are also presented. Finally,
the paper highlights several short term and long term research challenges and open issues specific to the SDN
interface protocols.

1. Introduction

Over 4 billion Internet users are connected through almost 65,000
Autonomous Systems (AS) throughout the world, and increasing rapidly
every year (Kemp, 2018; Yangyang and Jun 2020). Every AS requires
a set of applications to manage these networks. The implementation
of this diverse range of applications becomes difficult by using tradi-
tional network elements. These elements are usually based on Appli-
cation Specific Integrated Circuits, which may be vendor specific and
requires embedded OS with hundreds of lines of code in low-level lan-
guages. Configuration and implementation of policies on these devices
is not only time consuming but also difficult. Furthermore, it introduces
rigidity in networks, due to the application-specific nature of devices,
which makes network management complex.

∗ Corresponding author. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.
∗∗ Corresponding author. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.

E-mail address: kashif@bit.edu.cn (K. Sharif).

Software Defined Networks (SDN) (Kreutz et al., 2015) is an emerg-
ing form of networks that promises to resolve these issues by decoupling
the control plane from the data plane and provides a software-based
centralized controller. By this separation of control plane and data
plane, network switches become simple forwarding devices. Whereas,
decision making is shifted to the controller, which provides a global
view of the network and programming abstractions. This centralized
entity provides programmatic and real-time control of underlying net-
works and devices to operators. By using SDN, network management
becomes straightforward and helps in removing rigidity from the net-
work.

The layered structure of SDN architecture, as shown in Fig. 1 has
three major planes as data plane, control plane, and management
plane. Data plane contains physical network elements, which form
the data path. The control plane has a Network Operating System

https://doi.org/10.1016/j.jnca.2020.102563
Received 4 July 2019; Received in revised form 17 January 2020; Accepted 2 February 2020
Available online 7 February 2020
1084-8045/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2020.102563
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102563&domain=pdf
mailto:kashif@bit.edu.cn
https://doi.org/10.1016/j.jnca.2020.102563

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 1. Layered view of SDN Architecture and the interfaces.

(NOS), also referred to as a controller, which implements rules on data
plane devices. These rules and policies are designed in the manage-
ment plane of SDN architecture. Communication among these planes is
established by using well-defined Application Programmable Interfaces
(APIs). These interfaces are divided into Southbound, Northbound, East,
and Westbound APIs. The control plane and data plane communicates
through the Southbound API, which enables flow installation and con-
figuration of devices. The control plane and management plane uses
Northbound API to provide programmability in SDN. Inter-controller
communication of SDN domains is established using Eastbound API,
whereas Westbound API is responsible for the legacy domain to SDN
domain communication.

This paper specifically deals with interface protocols for SDN. These
interfaces play an important role in the overall communication process
between different planes and components. The southbound interface
can be segregated into OpenFlow (OF) (McKeown et al., 2008), OF
dependent, and OF independent proposals. OF is the most commonly
used southbound interface (SBI) in research and commercial SDNs.
Extensions of SBI into emerging technologies, such as sensor networks
and the Internet of Things, can also be treated as a special class of SBIs,
due to their unique requirements. More precisely, IoT & sensor devices
act as a perception plane, which can be visualized as a non-OF com-
pliant extension of data plane (Ojo et al., 2016). The devices are usu-
ally connected to data plane through gateways. Northbound interfaces
are classified in terms of portability, programmability, controller based,
and intent-based solutions. In this article, we consider virtualization
as middleware between different layers and the hardware. Hence, the
interaction of APIs with different virtualization techniques requires sep-
arate classification. Eastbound interfaces are categorized in distributed
and hierarchical architectures due to placement and communication of
controllers, whereas westbound interfaces usually use traditional Bor-
der Gateway protocols to bridge the gap between SDN and traditional
networks.

1.1. Objective & contributions of this work

Different aspects of software defined networks have been surveyed
in the past, but to the best of our knowledge, there is no comparative
analysis or survey which is specific to the different interface protocols.
There are a significant number of interface protocols proposed in the
literature and used in the industry. This work comprehensively covers
all such protocols, while presenting a detailed comparative analysis.
The significant contributions of this work are as follows.

∙ The original contribution of this article is to present a system-
atic survey and classification of different interface protocols for
software-defined networks.

∙ The most commonly used southbound interface is OpenFlow, and
this work classifies various solutions for southbound communi-
cation as dependent and independent of OpenFlow while com-
paring them for their properties and advantages.

∙ We also present OpenFlow like solutions for perception plane,
i.e. wireless sensor networks & the Internet of Things. It is impor-
tant to note that IoT (and sensor) networks are below the control
plane, hence they only interact with SBIs.

∙ We classify the northbound interfaces based on portability, pro-
grammability, controller-based, and intent-based solutions, and
individually analyze the available solutions.

∙ SDN combined with virtualization is a new paradigm and we
analyze both southbound and northbound interfaces with respect
to the virtualization platforms.

∙ We also categorize & discuss east and westbound APIs for com-
munication between SDN domains and legacy networks.

∙ Finally, we discuss future research directions for each of the
interfaces separately in the end.

1.2. Existing SDN studies

A comprehensive study of SDN is a difficult task as it is a multi-
dimensional field. However, it has been explored thoroughly from dif-
ferent aspects in several studies. Works in (Masoudi and Ghaffari, 2016;
Gong et al., 2015; Cox et al., 2017; Karakus and Durresi, 2017; Hu et
al., 2018) have discussed SDN for its application, architecture, control
and application plane, component design, evaluation testbeds, simu-
lation environments, and challenges. Works in (Karakus and Durresi,
2017; Hu et al., 2018; Fonseca and Mota, 2017; Trois et al., 2016) have
studied control plane scalability, consistency, reliability, controller dis-
tribution, load balancing, fault tolerance, and programming languages.
In (Lu et al., 2019), authors classify controller placement problem
into four aspects which include; reliability, latency, cost, and multi-
objectiveness. Moreover, it provides an analysis of specific algorithms
in different network scenarios. Research regarding emerging technolo-
gies in SDN, such as WSNs and IoT are discussed in (Kobo et al., 2017;
Ali et al., 2017; Bera et al., 2017). In (Blenk et al., 2016), a compre-
hensive survey on hypervisors is presented, where different hypervisors
are categorized according to their architectures and execution platforms
for SDN, while in (Li and Chen, 2015), authors present a relationship
between NFV and SDN and highlight the main challenges in Software
Defined NFV architecture. However, the focus of this work is on the
interface protocols and APIs in the layered structure and their associ-
ated challenges.

1.3. Organization of paper

The paper is organized into eight sections, as shown in Fig. 2, where
section 2 describes background information related to SDN interfaces
and their interaction with emerging technologies and virtualization
techniques. OpenFlow and other proposals for Southbound Interfaces
are presented in Section 3. Northbound interfaces and their classifica-
tion is presented in Section 4 with the aspects of portability and pro-
grammability. The effects of virtualization on SDN interfaces are dis-
cussed in Section 5. Communication among SDN domains and with
legacy networks is presented in Section 6. Section 7 outlines future
directions, and conclusions are drawn in 8.

2. Background

The main objective of this paper is to study the interfaces among
different planes of SDN. Before delving into such details, we first give
an overview of SDN architecture, its different components, and their
functionalities.

2

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 2. Overview and structure of this survey.

In traditional networking, control functionalities and data forward-
ing elements are embedded in a single device. Due to tightly coupled
control and data planes, network control is distributed in these devices,
which makes it difficult to run applications on these elements due to
vendor and language specifications. Moreover, the management and
configuration of such devices become difficult with increasing scalabil-
ity. SDN paradigm breaks this tight coupling of control functions and
forwarding elements and provides a unified control for running differ-
ent types of applications (Kreutz et al., 2015). presents comprehensive
details on the working and architecture of SDNs, hence, we focus only
on the interface details.

Before SDN, the concept of network programmability was studied
from two aspects: Active Networking (Tennenhouse et al., 1997) and
Programmable Networks (Campbell et al., 1999) (A&PN). Active Net-
working discusses the injection of intelligence in the network beyond
the conventional processing of packets. Whereas, Programmable Net-
works allows the control of network device behavior and flow con-
trol through software. This lays a clear foundation for the separation
between data and control plane, which later combined to become the
Software Defined Networking paradigm. The main reason for being a
wide acceptance of this paradigm is the rapid innovation in both planes
(i.e. control plane & data plane) (Haleplidis et al., 2015).

A controller is the fundamental component of the SDN control plane.
One of the key roles of a controller is to manage the traffic in underlying
network elements by using a set of instructions. There is a wide range
of controllers in SDN, and work in (Zhu et al., 2019) presents a com-
prehensive review of their capabilities. Features of each controller may
differ from one another, but the core and essential functionalities of all
the controllers are similar, for example, topology information, statistics,
notifications, and device management. To perform these tasks, every
controller uses a southbound interface such as OpenFlow. However,
some of the controllers offer a wide range of southbound interfaces
(e.g. OpenDaylight). Similarly, to run various applications, every con-
troller offers a northbound interface, however, there is no standardized
interface for this communication. Some data plane architectures have
multi-controller capabilities, which require eastbound communication
interfaces among the distributed controllers, whereas controllers may
try to communicate with legacy routers using the westbound interface.

Fig. 3. SDN interface placement and properties.

2.1. SDN interfaces

APIs are an architectural component of SDN used to push configu-
rations or information to forwarding elements or applications respec-
tively. Fig. 3 shows the different interface APIs and some of their prop-
erties.

2.1.1. Southbound API
Southbound API (SBI) is an SDN enabler, which provides a com-

munication protocol between the control plane and the data plane.
This API is used to push configuration information and install flow
entries in the data plane. It also provides an abstraction of the network
device’s functionality to the control plane. Major challenges of south-
bound interfaces are heterogeneity, vendor-specific network elements,
and language specifications. The southbound interface in SDN resolves
these issues by providing an open and standardized interface. There are
several examples for Southbound APIs, however OpenFlow (McKeown
et al., 2008) is considered as a standard in SDN. Section 3 presents a
detailed review of different SBIs.

2.1.2. Northbound API
The numerous benefits of SDN are fruitless if applications can not

benefit. SDN adoption depends on its ability to support a wide range of
applications. Northbound APIs (NBIs) play an integral role for applica-
tion developers and provides a common interface between controller
and management plane, by providing the information of underlying
devices for application development. Unlike the southbound interface,
the northbound interface has seen fewer standardization efforts (Kreutz
et al., 2015). A wide range of NBIs is offered by current controllers and
programming languages. In this paper, we discuss them from different
aspects in Sections 4 and 5.

3

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

2.1.3. East & westbound API
Centralized control over the network is the key feature of SDN, but

only a limited number of switches can be handled by a single controller.
In large scale networks, distributed controllers become a requirement,
where every controller has its domain with underlying forwarding
devices. Controllers need to share information about their respective
domains for a consistent global view of the entire network. Eastbound
APIs are used to import and export information among distributed con-
trollers. Some examples of these interfaces are (Yin et al., 2012; AMQP,
2020; RabbitMQ, 2020). On the other hand, Westbound APIs enable
the communication between legacy network devices (routers) with the
controllers. Some example solutions are discussed in (Nascimento et al.,
2011; Lin et al., 2013, 2014a). Detailed discussion and review are given
in Section 6.

2.2. SDN interfaces and perception plane

The use of SDN in domains other than local networks and data cen-
ters can be beneficial as well as challenging.

Wireless Sensor Networks (WSNs) have been deployed in
widespread applications from civil to military, and from environmental
to health care. In more recent years, the Internet of Things (IoT) (Siow
et al., 2018) has evolved as a major future Internet component (Bradley,
2013), where WSNs are integrated into a larger ecosystem with hetero-
geneous devices and use cases. SDN can provide centralized control
and configuration, policy enforcement, and programming abstraction,
for large scale IoT (and sensor) networks (Boulis et al., 2007; Mottola
and Picco, 2011). Although some research has been done for the soft-
warization of WSNs (Kobo et al., 2017; Khan et al., 2016), and IoT
(Bizanis and Kuipers, 2016), however, it is limited to architecture and
security perspective. Most of IoT and sensor networks are visualized as
a perception layer below data plane in the SDN architecture, as shown
in Fig. 3. A major challenge is to extend the SBI into the perception
plane beyond OF switches.

2.3. Virtualization and SDN interfaces

Network Function Virtualization (NFV) (Mijumbi et al., 2016) offers
new ways to deploy, design, and manage networking devices. It sepa-
rates network functionality, such as firewalls, Network Address Trans-
lation (NAT), and Domain Name Service (DNS), from hardware devices,
so that they can be run remotely. There are several studies (Wang et al.,
2016a; Fei et al., 2017, 2018; Zeng et al., 2018; Wang et al., 2017a; Li et
al., 2018; Xu et al., 2016) on NFV placement, scheduling, routing, load
balancing, 5G applications, performance interference, acceleration via
FPGA, and energy efficiency. Similarly by using hypervisors, devices,
hardware resources, and entire network slices can also be virtualized.
Fig. 4 shows the interaction of NFV elements within the SDN architec-
ture and communication with different planes. It is important to note
that, SDN, NFV, and other softwarization techniques are not depen-
dent on each other, but are rather complementary. Virtual Infrastruc-
ture Manager (VIM) controls and manages NFV infrastructure storage,
computing, and network resources. It also keeps a mapping of the allo-
cation of virtual resources to physical resources and manages virtual
networks, links, and ports. Virtual Network Function Manager (VNFM)
is capable of handling multiple Virtual Network Functions (VNFs) by
using the Element Management System (EMS). NFV can be utilized in
two ways. One is the virtualization of network resources by making
slices (e.g. Hypervisors) where the southbound interface is involved.
The other is to control these slices (e.g. Applications based Virtualiza-
tion) which involves the northbound interface. Both of these interfaces
(Northbound and Southbound) then become an integral part of NFV,
while still being utilized by the SDN controller for flow installation and
application communication.

3. Southbound interfaces (SBI) in SDN

Software Defined Networking separates network control and for-
warding functions. With the help of southbound interfaces, forwarding
function is kept on the device whereas, network control is shifted to an
external controller. Southbound APIs enable the link between the data
plane and the control plane. It is very important that this link remains
available and secure, otherwise, the forwarding elements cannot func-
tion.

The main objective of this interface is to push notifications given
by the controller, to data plane devices, and provide information about
these devices to the controller. It allows the discovery of network topol-
ogy, define network flows, and implement requests sent by the man-
agement plane. Some of commonly known southbound interfaces are
OpenFlow (OF) (McKeown et al., 2008), FORwarding & Control Ele-
ment Separation (ForCES) (Haleplidis et al., 2015), Open virtual Switch
Database (OvSDB) (Pfaff and Davie, 2013), Protocol Oblivious Forward-
ing (POF) (Song, 2013), OpFlex (Smith et al., 2020), OpenState (Bianchi
et al., 2014).

Fig. 5 presents the classification of different southbound interface
proposals. OpenFlow (McKeown et al., 2008) is the most commonly
used API and considered as a standard southbound interface. Most of
the proposals are either extensions or somehow dependent upon Open-
Flow. Two proposals for southbound interfaces (i.e. OvSDB and OF-
Config) work as OpenFlow companions and help it to provide config-
uration capabilities. Whereas, proposals like ForCES, OpFlex, and Net-
Conf, are independent of OpenFlow. Proposals like Sensor OpenFlow
(SOF) (Luo et al., 2012), Software Defined Wireless Networks (SDWN)
(Costanzo et al., 2012), SDN for WIreless SEnsors (SDN-WISE) (Galluc-
cio et al., 2015), and HUBsFlow (Cicioğlu and ÇalhanHubsflow, 2019)
are southbound interfaces defined specifically for perception plane. In
the following subsections, the same classification is discussed, with an
additional section on the security perspective of SBI.

3.1. OpenFlow

OpenFlow is a standardized and most commonly used southbound
interface. It was designed particularly for SDN to provide commu-
nication between controller and forwarding elements. OpenFlow has
evolved from version 1.0 with only 12 fixed matching fields and a sin-
gle flow table to version 1.5 with 41 matching fields and several new
functionalities. Fig. 6 shows the difference & capabilities of different
OpenFlow versions, while work in (Ching-Hao and Lin, 2015) presents
technical details of each capability.

OpenFlow enabled devices must have three main components; Flow
Table, Secure Channel, and OpenFlow protocol. Devices may have one
or more flow tables, while the secure channel connects them with the
controller, and the protocol provides communication with external con-
trollers as shown in Fig. 7. OpenFlow pipeline has several flow tables
along with the group table and meter table. Tables in OpenFlow enabled
switches have flow entries in the format of match, actions, and statis-
tics. For each packet, header matching is done which includes; source
and destination IP, source and destination port, source and destination
MAC, along with VLAN tags, and Ethernet types. Flow tables are nor-
mally numbered and start from 0 and the packet processing pipeline
always starts from this table. Based on this matching a particular action
is taken to forward the packet on one or more ports. If no match
is found, then it is forwarded to the controller using Packet_IN mes-
sage. This message contains the information of the ingress port, packet
header, and Buffer_ID where the packet is stored. To respond Packet_IN
message, controller sends a Packet_OUT message. This message contains
Buffer_ID of corresponding Packet_IN message and actions to perform
(e.g. Forward to a particular port, drop, etc.). To handle the subsequent
packets of the same flow, the controller sends a Flow_Mod message to
switch with the instruction to insert rules into the flow table. Given

4

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 4. Basic SDN and NFV interface abstraction.

Fig. 5. Classification of OpenFlow dependent and independent SBI proposals.

rules are matched for the subsequent packets of the same flow and
action is taken at line speed. Meanwhile, the counter is updated accord-
ingly and statistics are generated per rule, per table, per port, per queue
or per timer.

3.2. OpenFlow dependent SBI proposals

This sub-section describes the Southbound proposals which are
based on OpenFlow and attempt to enhance its existing features or in its
newer versions. Some of these issues have been addressed by OpenFlow

Fig. 6. Major properties of different OpenFlow versions.

5

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 7. OpenFlow structure.

fully, some are resolved partially, and few of the shortcomings are still
present in OpenFlow protocol. Table 1 represents such solutions along
with their objectives.

Enabling legacy network devices to become OpenFlow compliant
is a complicated task. Hardware Abstraction Layer (HAL) (Parniewicz
et al., 2014) attempts to resolve this issue. It decouples hardware-
specific control and management logic from the network node abstrac-
tion, which hides device complexity and vendor specific features. HAL
achieved this decoupling by introducing two sub-layers: Cross Hard-
ware Platform Layer (CHPL) and Hardware Specific Layer (HSL). CHPL
covers node abstraction, virtualization, and configuration mechanisms,
whereas HSL is responsible for discovering the particular hardware plat-
form and perform all required configuration using Hardware Specific
Module (HSM). Furthermore, every network element in this environ-
ment has its protocol for communication purposes, controls, and man-
agement of the underlying system. HSL is used to hide this complexity
and heterogeneity. Depending on the type of network devices, commu-
nication between these two layers is done by using the Abstract For-
warding API and Hardware Pipeline API. Another interesting feature of
HAL is its compatibility with multiple versions of OpenFlow.

OpenFlow has undergone many changes since its initial versions
and pace of development has required other third-party hardware and
software in data and control planes to make massive changes to their
solutions. OpenFlow has detailed specification documents for each ver-
sion but to create new libraries for each platform is time-consuming.
Revised OpenFlow Library (ROFL) (Suñé et al., 2014) resolved this
problem and provided a clean and easy to use API which hides the
details of respective protocol versions (i.e. 1.0, 1.2 and 1.3), and sim-
plifies application development. ROFL uses eXtensible Datapath dae-
mon (xDPd) which is a framework for developing SDN datapath ele-
ments. It uses three major libraries, ROFL-common, ROFL-pipeline, and
ROFL-HAL. ROFL-common is used to provide the basic support of Open-
Flow protocol which comprises of protocol parsers and message man-
gling. ROFL-pipeline is employed as a data model whereas ROFL-HAL
is implemented as an interface.

DevoFlow (Curtis et al., 2011) addressed the overhead created by
the OpenFlow, due to full control and visibility of all flows through
the software controller. It claims that the ratio of the control plane
to the data plane is four orders of magnitude and less than its aggre-
gate forwarding rate. DevoFlow attempts at resolving this problem by
devolving control of most flows back to switches while the controller
maintains control over targeted and significant flows only. In this way,
switch-controller interactions and Ternary Content Addressable Mem-
ory (TCAM) entries may reduce overhead. Another target is to provide
the aggregated flow statistics to maintain enough visibility of network,
but this approach required major modifications in switch design which
may be costly.

The same problem was addressed by OpenState (Bianchi et al.,
2014), where authors argue that all control should not be given to a cen-

tralized controller and making switch stateless is a compromise rather
than a choice which causes extra communication between devices and
controller. It also suggests that the programmers can deploy states in
the device rather than using an external controller. OpenState abstrac-
tion relies on the Extended Finite State Machine (XFSM) that allows the
implementation of several stateful tasks inside forwarding devices. It
uses XFSM as an extension of the OpenFlow match-action phenomenon
and allows the implementation of several stateful tasks inside the for-
warding element without introducing overhead for the controller. All
the tasks, which involve local states, such as port knocking and MAC
learning, can be executed directly in network elements without any
overhead of control plane communication or processing delay.

Another problem in OpenFlow reported by POF (Song, 2013) is that
it is reactive rather than proactive, and the data plane needs to be pro-
tocol aware. Due to this reason, data plane devices need to understand
packet headers in a specific format to extract keys and execute packet
processing, which again causes overhead. Moreover, the data plane is
almost stateless and cannot perform any action without the involve-
ment of controller, which means data and control planes are not prop-
erly decoupled hence leading to problems like a hindrance in innova-
tion, reducing programmability potential, and causing complexity for
large scale networks. To resolve all these problems POF proposed Flow
Instruction Set (FIS) which makes forwarding elements as white boxes,
protocol oblivious and ensures its simplicity. FIS is a protocol indepen-
dent set of instructions that helps to compose network services from
the control plane. At the same time, it helps in completely decoupling
control and data plane so that both of these planes can evolve indepen-
dently.

P4 (Bosshart et al., 2014) is another proposal that works in con-
junction with OpenFlow. It argues that rather than extending Open-
Flow specifications repeatedly, it is better to have a flexible mechanism
to parse packets and match header fields. It acts as a general interface
between the control plane and data plane and raises the level of abstrac-
tion for programming. P4 supports a programmable parser where new
headers can be defined. Match & action stages in OpenFlow are in series
whereas, P4 supports these stages in series as well as parallel. Moreover,
similar to POF, it solves the issue of protocol dependency. Several stud-
ies have been done based on P4 which are integrated into other tech-
nologies and not directly related to SBIs. For example, Tango (Lazaris et
al., 2014) is a control system to optimize the SDN controller for switch
diversity. Similarly, Dasu et al. (2017) proposed the addition of geo-
tags to IP packets to provide location-based services and enhance the
capabilities of communication.

In Programming Abstraction Datapath (PAD) (Belter et al., 2014)
authors discuss switch capabilities for programmability and provide a
southbound API for other types of devices such as Optical Switches.
It provides generic programming of forwarding devices by using
byte operations that define protocol headers and functions. A packet
received at the ingress port using PAD is bound with metadata and pro-

6

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Table 1
Comparison of OpenFlow dependent SBI proposals.

Literature Objective Solution Benefits Network Type Resolved by OpenFlow?

POF (Song, 2013) Remove dependency on
protocol specific
configuration

Flow Instruction Set
(FIS)

Reduce network cost by
using commodity
forwarding elements

Not Mentioned No

OpenState (Bianchi et
al., 2014)

Reduce Overhead
between the switch
and controller

Making devices as
eXtensible Finite State
Machines (XFSM)

Reduce Interaction
between controller and
forwarding elements

Not Mentioned Partially Solved

ROFL (Suñé et al., 2014) Development of enabled
applications and
support new OF
versions and
extensions

eXtensible DataPath
daemon (XDPd)

Supports multiple
versions of
simultaneously

Not Mentioned No

HAL (Parniewicz et al.,
2014)

To realize OF
functionality in legacy
network devices

Cross Hardware Platform
Layer and Hardware
Specific Layer

Legacy Network devices
to communicate with
SDN domains

Data Center Networks Yes

PAD (Belter et al., 2014) Expose switch
capabilities and better
utilization of network
devices

Generic Byte Operation Works for devices which
are not working on
packets e.g. Optical
Switches

Not Mentioned Yes

DevoFlow (Curtis et al.,
2011)

Control traffic overhead Giving control to switch
and controller only
manages targeted
flows

Reduce Interaction
between controller and
forwarding elements
but major changes
required in switch

Data Center Networks Partially Solved

P4 (Bosshart et al., 2014) Switch diversity and
addition of new tags

Programmable packet
parser

Programmers can add
new tags and no
specifications of
OpenFlow required

Data Center Networks No

OvSDB (Pfaff and Davie,
2020) (For Config.)

Enhances configuration
capabilities of
OpenFlow

Uses database server and
switch daemon

Provides better
configuration

Hybrid Networks –

OF-Config (ONF-TS-016,
2014) (For Config.)

Remote configuration of
OpenFlow switches

Uses configuration points Provides flexibility for
configuration in
OpenFlow switches

Hybrid Networks –

cessed through a search engine, which is a functional component of
PAD. As a result of this search, a function name is added which will
be executed on this packet in an execution engine. Finally, the packet
is forwarded to an egress port for transmission. PAD is applicable to
optical flows, where forwarding functions do not contain packet infor-
mation but other instructions.

Configuration: There are two solutions that provide a configuration
in OpenFlow: OvSDB and OF-Config. These protocols form a relation-
ship between controller and switches. OpenFlow determines the route
of the packet but it does not provide the management and configu-
ration which is necessary to assign IP addresses or port allocation. In
traditional networks, vendors normally use different configurations and
management methods which either depend on protocols like SNMP or
use the command-line interface. SDN provides a holistic view of every
component of the network to engineers.

OvSDB (Pfaff and Davie, 2020) is designed to be used as a virtual
switch to forward traffic between different virtual environments. It is
an open-source switch, hence open to programmatic extensions and
control using OpenFlow, and based on client and server implementa-
tion. Open vSwitch is a complementary protocol to OpenFlow. Inside
a virtual switch, there is ovsdb-server, ovsdb-daemon and optionally
a forwarding path. A virtual switch uses OpenFlow as an interface to
communicate with the control and management cluster. Furthermore,
it allows the creation of multiple virtual switch instances, set Quality
of Service (QoS) policies on interfaces, and collect stats. Managers can
specify the number of virtual bridges by using OvSDB which allows
them to create, configure, and delete ports.

OpenFlow Configuration Protocol (OF-Config) (ONF-TS-016, 2014)
has a special set of rules to define the mechanism for controllers to
access and modify the configuration data on OpenFlow switches. It
works as a companion of OpenFlow protocol and allows remote config-
uration of OpenFlow switches. The major difference between OpenFlow

and OF-Config is that OF modifies match-action rules which effects flow
in switch datapath. Whereas, OF-Config remotely configures multiple
OF datapaths in a physical and virtual platform.

Insights: Most of the solutions based on (or extensions of) Open-
Flow address the shortcomings in it. Some of these solutions have
already been adopted by OpenFlow, whereas some of these are still
open challenges. The key insight is that two main factors dominate
OF research: Legacy device compatibility, and control overhead. OF
developed generic solutions similar to HAL (Parniewicz et al., 2014)
& PAD (Belter et al., 2014) for compatibility, and DevoFlow (Curtis et
al., 2011) for control overhead reduction, which was for specific types
of networks as shown in Table 3. OpenFlow version 1.3 (ONF-TS-006,
2012) addressed compatibility by introducing OpenFlow hybrid, while
version 1.4 (ONF-TS-012, 2013) has added support to optical switches.
To reduce the overhead between controller and data plane devices
OpenFlow proposed Stats-Trigger in version 1.5 (ONF-TS-025, 2015)
which solved the problem partially. However, issues like the support of
multiple versions of OpenFlow and protocol dependency are still open
research challenges.

3.3. OpenFlow independent SBI proposals

In this sub-section, southbound API proposals that are independent
of OpenFlow or are parallel proposals have been discussed. Table 3
presents a summary of all these solutions with their objectives, solu-
tions, and benefits.

Forwarding and Control Element Separation (ForCES) (Haleplidis
et al., 2015) standardized by IETF, is a proposal which is designed to
replace OpenFlow. It defines two entities as Control Element (CE) and
Forwarding Element (FE), which are logically kept in the same physical
device without changing the architecture of traditional networks and
without the involvement of an external controller as shown in Fig. 8.

7

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 8. ForCES (Haleplidis et al., 2015) architecture.

It uses a Logical Function Block (LFB) which resides inside FE and has
a specific function to process packets and allows CE to control FE. FEs
take LFBs as a graph and uses them to perform well-defined actions and
do logical computations on packets that are passing through them. Each
LFB can perform a single action on a packet.

ForCES messages are the key enabler to provide the control of FEs
to CEs, and just like OpenFlow it also requires a transport protocol. This
transport protocol not only provides communication between FE and CE
but also provides extra services like reliability and security mechanisms.
Rather than using TCP for this purpose (as used in OpenFlow), ForCES
uses Stream Controlled Transmission Protocol (SCTP) (Stewart, 2007)
which provides a range of reliability levels. Another major reason for
using SCTP is the duplication and re-transmission nature of TCP, which
in case of congestion, will make things worse. SCTP is also a good design
choice for ForCES for its resiliency to failure detection with built-in
recovery mechanisms.

A detailed comparison between OpenFlow and ForCES is discussed
in (Hares, 2020) but in this paper, we provide a summarized and con-
densed comparison between these two competitors. Table 2 summa-
rizes some of the major differences in OpenFlow and ForCES. One of the
major differences between OpenFlow and ForCES is that every time new
functionality is added, OpenFlow has to be modeled and standardized
accordingly. Whereas, ForCES provides extensibility without the need
for standardizing again and again. ForCES deployment is not restricted
to any specific design of forwarding elements, but for OpenFlow, there
are switch specifications of predefined features. However, despite being
a mature solution, ForCES could not gain widespread adoption by ven-
dors.

OpFlex (Smith et al., 2020), proposed through a draft for IETF from
Cisco, is a protocol that provides communication between the cen-
tralized controller and data plane but with a very different scope as
compared to OpenFlow. OpFlex is based on a declarative policy infor-
mation model that means it centralizes only policy management and
implementation but distributes intelligence and control. With the aim
of scalability, OpFlex tries to distribute the complexity in such a way
that forwarding devices are responsible for managing the whole net-

Fig. 9. OpFlex (Smith et al., 2020) architecture.

work except policies. These policies are defined at logically centralized
Policy Repository (PR) which communicates with Policy Elements (PE)
using the OpFlex protocol. End Point devices are connected with Pol-
icy Elements and get registered by using the EndPoint Registry which
is responsible for the addition/removal of End Points. Another repos-
itory in OpFlex is Observer (OB) which is responsible for statistics of
faults and events. This interaction is depicted in Fig. 9. One major lim-
itation of OpFlex, as compared to OpenFlow, is that it takes away the
key feature of programming the network from a centralized controller.

NetConf (Enns et al., 2011) which uses Remote Procedure Call (RPC)
paradigm, is a protocol that defines a simple mechanism by which net-
work devices can be managed, configuration data can be retrieved, and
new configuration data can be uploaded and manipulated. One of the
key aspects of NetConf is that it closely mirrors the functionality of the
management protocol to the native functionality of the device which
directly reduces cost and allows timely access to new features. This
proposal existed before SDN, but just like OpenFlow it also provides a
straightforward API. This API can be used by applications to send and
receive full or partial configuration datasets.

Segment routing allows the addition of state information to packet
headers. This reduces the configuration overhead at nodes and results
in a faster and simpler service setup. SRv6 (Ventre et al., 2018) is a
similar SDN based segment routing approach for IPv6, while employing
gRPC, REST, NETCONF, and SSH/CLI. The configuration of SRv6 rules
in the devices is decomposed into two parts. One is the communica-
tion protocol which is used to send the requests to the SRv6 manager
running at the node. The other part helps in the local configuration
of the rules which uses the controller requests sent to SRv6 manager.
Unlike OpenFlow, the controller does not interact with all the edge and
core switches for topology discovery and flow rule installation, rather it
uses OSPF v3 for topology discovery. The primary benefit is simplified
configuration.

Insights: It is interesting to note that although ForCES was sup-
ported by IETF, it did not gain the industry confidence. The major rea-
son was the vast deployment of and support from multiple developers
and hardware vendors. Table 3 presents a summary of all the Open-
Flow independent proposals with their objectives, solutions, and bene-
fits. Some major benefits of ForCES over OpenFlow are its extensibility
as well as no restriction on device specifications. It offers a rich set of
features but lacks in open source support. Similarly, OpFlex restricts
programming in networks which is a key feature of SDN. NetConf, on
the other hand, is not a purpose-built interface for SDN, thus it does not
provide enough flexibility. SRv6 minimizes the configuration in seg-

8

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Table 2
Summary of comparison between OpenFlow and ForCES.

Southbound Interface Standardizing Body Protocol Used Determinants Extensibility IP Versions Support

ForCES (Haleplidis et al., 2015) IETF (Internet Engineering Task Force, 2020) SCTP Logical Functional Block Yes IPv4
OpenFlow (McKeown et al., 2008) ONF (ONF, 2020) TCP Match Fields and Actions No IPv4 and IPv6

Table 3
Summary of OpenFlow independent SBI proposals.

Literature Objective Solution Benefits

ForCES (Haleplidis et al.,
2015)

Separation of Control
and Forwarding
Element in same
Network Element

Logical Function Block Enables Data and Control
Plane separation using
traditional network
elements

OpFlex (Smith et al.,
2020)

Distribute Complexity
and Improved
Scalability

Declarative Policy Model Enhanced Scalability

NetConf (Enns et al.,
2011)

Reduced Complexity and
Enhance Performance

Remote Procedure Call
(RPC)

Close to native
functionality of switch
and reduces cost

SRv6 (Ventre et al.,
2018)

Minimize Configuration
Overhead

Coexistance of Multiple
Protocols

Provides faster and
simpler configuration

ment routing for IPv6, however, it is not directly comparable to Open-
Flow protocol.

3.4. Southbound APIs and perception plane

Internet of Things and wireless sensor networks are connected at
the edge of a network and are considered beyond vSwitches. From the
SDN perspective, they fall in the perception plane as shown in Fig. 3.
Perception plane can be considered as an extension of data plane where
devices are not completely OF compliant, hence many solutions have
tried to extend OF to such devices. Here we classify these solutions for
sensor networks and IoT networks.

3.4.1. SBI for wireless sensor networks
The development of smart sensors has enabled the monitoring of

physical and environmental factors in numerous use cases. Software
Defined Wireless Sensor Networking (SDWSN) (Kobo et al., 2017) is a
relatively new paradigm for Low Rate-Wireless Personal Area Network
which can be realized by infusing the SDN model into WSNs. South-
bound Interface plays an integral role in SDN, but it is very hard to
implement in SDWSN because of the following basic reasons:

∙ Matching fields in OpenFlow address centric, and flow entries
are installed using the source IP and destination IP. Whereas,
WSNs is data-centric, where data acquisition is more important
than the source of data. Hence, flow creation is challenging in
WSNs.

∙ Addressing in WSNs is not IP-based which prevents SDWSN SBI
from creating flow entries. Moreover, it becomes hard to estab-
lish a TCP/IP based secure channel in SDWSN.

∙ To install or uninstall flows on sensor devices that are limited in
size and memory, it may introduce overhead on the communica-
tion channel.

∙ Due to the device constraints, routing algorithms of WSNs are
quite different from data centers or other networks. Hence, the
topological information needed is more detailed and may not be
represented by OpenFlow headers.

Sensor OpenFlow (SOF) (Luo et al., 2012) is based on standard
OpenFlow but modified to the requirements of low capacity sen-
sor nodes. It addresses challenges like; flow creation, secure channel
between the control plane and data plane, control traffic overhead,
and in-network processing, etc. To install the flows on sensor network

devices, it redefines the flow tables due to special addressing schemes
of WSNs. Flow tables are categorized into two classes: Class1 contains
compact network unique addresses as 16-bit addresses in ZigBee, and
Class2 uses concatenated attribute-value pairs. Class1 is handled by the
use of OpenFlow eXtensible Match (OXM), a TLV format by adding two
new addresses as OXM_SOF_Source and OXM_SOF_Destination. Another
solution for this problem is to use uIP and uIPv6. uIP is an implemen-
tation of IPv4 in the Contiki operating system normally used for WSNs
and the Internet of Things. Just like an OpenFlow secure channel, SOF
suggests either to use Transport Protocol directly in WSNs or channels
that can be supplied through uIP or uIPv6. To curb the control traffic
between data and control planes, it proposed a customized solution of
Control-Message Quenching (CMQ). However, the main focus was on
the message type, packet format, and operations, hence authors did not
provide any performance evaluation.

Software Defined Wireless Networks (SDWNs) (Costanzo et al.,
2012) proposed some significant features to reduce energy consump-
tion in WSNs by introducing duty cycles and in-network data aggre-
gation. Another significant feature of SDWNs is to support the flex-
ible definition of rules. Duty cycles are used to reduce energy con-
sumption by turning the radio off when it is not being used. Another
approach used to reduce energy consumption is in-network data aggre-
gation. Unlike traditional OpenFlow, flexible flow entries are required
for SDWNs because of its nature. SDWNs protocol architecture uses
generic nodes as well as a sink node. All generic nodes run physical
and MAC layer functionalities. The forwarding layer which is on top
of the MAC layer is responsible to treat a packet as specified by the
controller. All the generic nodes are connected to sink node(s) which
has the same architecture as generic nodes except a few functionalities.
A sink node has more computational and communication capabilities.
Therefore, sinks are executed in Linux based embedded system. Embed-
ded systems and sinks are connected through USB, RS232, or other
interfaces. Another feature of the sink is to use a virtualizer with the
responsibility of collecting information about generic nodes to build
a detailed representation of network topology. Same as SOF, SDWNs
also did not provide any performance evaluation and mainly focused
on architectural details. Hence, actual performance is still unknown and
maybe a research direction for the community.

SDN for WIreless SEnsors (SDN WISE) (Galluccio et al., 2015) goes
one step further as compared to previous studies, and is implemented
in OMNet++ with the objectives of reducing communication among
sensor nodes to/from SDN controller and making sensor nodes pro-

9

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

grammable as a finite state machine, unlike standard OpenFlow which
is stateless. In the control layer, it uses WISE Visor, which has Topology
Manager for the collection of local information from the nodes and for-
wards it to the controller in the form of a graph with the topographic
information, energy levels, and SNR of nodes. In the data plane, In-
Networking Packet Processor is responsible for data aggregation and
other in-network processing to reduce the overhead. Between control
and data plane, there is an adaptation layer which is responsible for
formatting the messages received from sinks in such a way that they
can be handled by WISE Visor and vice versa. An application of SDN
WISE is in (Anadiotis et al., 2018) where a unified system is realized,
which enables communication of heterogeneous devices under a sin-
gle network operating system, by adding subsystems like Sensor Node,
Sensor Flow Rules, and Sensor Packet Subsystem.

A recent proposal of HUBs-Flow (Cicioğlu and ÇalhanHubsflow,
2019) is a southbound interface for SDN based Wireless Body Area
Network (SDN-WBAN) which supports IEEE 802.15.6. This technique
uses Hello and Echo control messages between the control plane and
Hubs (which connect to body sensors and collect data), to piggyback
information such as addresses, slot information, packet size, and packet
priorities. Using this information, the SD-WBAN controller installs flow
rules on HUBs. Similar to SDN-WISE, HUBsFlow also supports the duty
cycle approach.

Insights: Table 4 summarizes the feature based comparison of dif-
ferent southbound interfaces for WSNs proposals. SOF and SDWN pro-
vide theoretical details, whereas SDN-WISE and HUBsFlow provided
practical implementations. Nodes in sensor networks are susceptible
to the movement which can cause path variation during packet trans-
mission. It is very important to manage and monitor the movement of
different nodes. One of the major challenges of SDN is to handle the
effect of nodes entering or leaving the network. Another challenge is
to build paths using different metrics (i.e. node energy and capability).
The interface in such cases should be able to optimally gather required
information for the controller. Moreover, controller placement in case
of a wireless southbound interface is another research area (Dvir et al.,
2019).

3.4.2. SBI for Internet of Things
Smart cities, smart grids, and intelligent transportation has

expanded the Internet of Things domain significantly. IoT networks are
not just sensor networks, rather they are more complex and implement
WSNs as a sub-part of the whole ecosystem. Due to a large number of
devices connected to the Internet, there are several challenges in IoT:
scalability, connectivity, big data, security, and heterogeneity, etc. SDN
provides a centralized controller and high-level management which
hides the complexity to provide solutions for above-discussed prob-
lems. Implementation of SDN in IoT networks resolves several issues
but introduces some new challenges.

∙ Device Heterogeneity: IoT devices are very diverse in nature
and may use different types of technologies. Their capabilities
also may vary, which requires new types of software-defined
solutions, including controllers, virtual switches or SDGateways,
and southbound interfaces.

∙ Interface and Topological Diversity: Each IoT device may have
multiple communication technologies, e.g. WiFi, BLE, 5G, etc.
As the flow installation on such a network is not simple, hence
the southbound interfaces have to adapt. Moreover, SBIs also
should be able to work with hybrid wired and multi-hop wireless
networks.

∙ Protocol Integration: Each technology in IoT may have its
packet format and processing rules. Flow installation with such
a variety of protocols is a very challenging task.

To address these challenges, an OpenFlow like solution is required
for IoT using SDN. There are several solutions available in the literature,

but most of them do not resolve all the problems. Table 5 presents a
summary of these proposals.

Salman et al. (2015) proposed architecture for implementing SDN
in IoT and proposed a layered architecture to overcome problems like;
scalability, big data, heterogeneity, and security. The bottommost layer
is a device layer with different IoT devices and identifiers to differen-
tiate them. The network layer is used to overcome the heterogeneity
by using Software Defined Gateways (SD Gateways). SD Gateways can
communicate with IoT devices using different technologies. An exten-
sion to OpenFlow is recommended but no specifications are discussed.
However, for configuration purposes, some management protocols (e.g.
NetConf, OF-Config, and Yang) are recommended. Another main fea-
ture of these SD Gateways is to reduce the power consumption because
of big data problems. The control layer consists of SDN controllers with
the responsibility of collecting topology information, path calculation,
and forwarding rules. Security rules are defined using algorithms but
no details on flow rule installation are discussed. At the topmost layer,
there are different network applications.

Li et al. (2016) address the issues of interoperability, resource shar-
ing, and flexibility for applications and services. It proposes a layered
architecture where IoT devices are at the bottom layer and are referred
to as the device layer. These devices are connected to switches or gate-
ways which are at the communication layer. A module named Data
Processing and Storage Center is also in the communication layer and
controlled by the SDN controller. This module is capable of storing
selective data of IoT devices and sinks, and also responsible for data
format conversion. On top of the communication layer, there is a com-
puting layer where SDN controllers are placed. The service layer is the
topmost layer. Besides the data forwarding capability of switches and
gateways, they can also store or cache local data and process it under
the instruction of the SDN controller. An extension in OpenFlow ver-
sion 1.0 is done by adding two flags. These flags mark data format and
caching capabilities of the switch.

To resolve the problems of scalability and mobility, Ojo et al. (2016)
provide a general architecture for IoT with the coupling of SDN and
NFV. This architecture contains four layers; perception layer, data layer,
control layer, and application layer. Devices in perception layer sense
data and forward to data layer by using Software Defined enabled gate-
ways. These Software Defined enabled gateways to provide manage-
ment flexibility, as underlying devices belong to different technologies.
Apart from these Software Defined gateways, there are also switches in
the data plane. These devices can be programmed through controllers
(e.g. ONOS, OpenDaylight) by using a southbound interface (e.g. Open-
Flow, OvSDB, NetConf, BGP, etc.). This study lacks implementations
and does not elaborate on how OF will be used beyond the gateway
into the perception plane.

Multi-network INformation Architecture (MINA) (Qin et al., 2014)
is another method to resolve the issues of heterogeneity and interop-
erability. It proposes a controller architecture and an OpenFlow like
protocol. In the controller, it uses data collection components that col-
lect network information and stores it in databases. This information
is then utilized by other components of the controller. Among these
components, there is an admin/analyst API which allows governing dif-
ferent control processes by controller itself as well as external programs.
Other components are; task-resource matching, service solution specifi-
cation, and flow scheduling. A task can be realized by a single service
or multiple services. Task-resource matching specifies, which devices or
applications can be used to complete a particular task. After matching,
the controller maps the characteristics of devices and services involved
in that matching by using the service solution specification compo-
nent. It also handles specific requirements for devices or application
constraints. These requirements are taken by the flow scheduling com-
ponent to schedule flows. This component uses an algorithm to resolve
the complexity due to the heterogeneity of different technologies. An
OpenFlow like protocol is used in the communication layer for flow
scheduling and data collection purposes. However, detailed discussion

10

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Table 4
Summary of SBI proposals for wireless sensor networks.

Features SOF (Luo et al., 2012) SDWN (Costanzo et al., 2012) SDN-WISE (Galluccio et al., 2015) HUBsFlow (Cicioğlu and ÇalhanHubsflow, 2019)

Flow Creation Yes Yes Yes Yes
Field Matching Yes Yes Yes Yes
Action No Yes Yes Yes
Statistics No No Yes Yes
Data Aggregation No Yes Yes No
In-Network Processing Yes Yes Yes No
Duty Cycles Reductions No Yes Yes Yes
Mobility Management No No No No
Multi-metric Paths No No Partial No
Implementation Available No No Yes Yes

and working of it are not discussed in the paper.
CENSOR (Conti et al. 2019) architecture aims at providing secu-

rity and enhances the performance in heterogeneous IoT networks. It
uses the IoT controller, an IoT agent, and a specialized software remote
attestation component for security. The lowest plane in CENSOR is the
object plane which consists of IoT devices. IoT agent is a small piece
of software that runs in these devices. This software is executed in a
Trusted Platform Module (TPM) and attested periodically. Above the
object plane is the data plane which has OpenFlow enabled devices.
Similar to the object plane, devices in the data plane are also attested
which makes a hierarchy. However, the communication between the
object plane and data plane or object to the control plane is not entirely
defined. Extension of to objects maybe future research direction in this
regard.

In (Desai et al., 2016) Desai et al. provided a framework where an
OpenFlow Management Device is responsible to provide communica-
tion between IoT devices and OpenFlow enabled switches. This device
runs its own Linux based operating system. The bottom layer consists
of hardware and protocols and these components are the base of this
device. The device is claimed to be extensible to more protocols. Above
this layer are libraries that provide different functionalities, such as
security, web connection, and SQL. The application framework layer
is on top of libraries with the resource manager, location manager,
activity manager, and above this there is an application layer. Data
plane devices communicate with the control plane as well as with this
device using the OpenFlow protocol. Flow installation mechanisms, in
this study, are not discussed.

Insights: Table 5 gives a comparative analysis of the proposals dis-
cussed in this section. Most of the literature related to IoT has focused
on two parts: Controller and API. We find that more preference is given
to controller design and it is assumed that OpenFlow or something sim-
ilar will be able to communicate with the devices. The objective of this
paper is limited to APIs, hence we limit this section to those works
which have elaborated (even in passing) on the SBIs. It is important
to highlight the necessity of SBIs specific for IoT devices. OF was not
designed for mobile low capacity heterogeneous IoT devices. Hence,
firstly it is important to evaluate the effect of communication perfor-
mance in such networks, and then perhaps a more lightweight and
customized API can be developed targeted for IoT networks. In IoT,
OpenFlow is not limited to controller and vSwitch. It has to extend its
reach to IoT devices. Hence, solutions which go beyond the SDN gate-
ways is an important research area. Similarly, the SBI also needs to offer
functionality other than flow installation.

3.5. SBIs and security challenges

OpenFlow is predominantly the most used SBI, however, Transport
Layer Security (TLS) is optional in its configuration, which makes net-
work infrastructure vulnerable. TLS is considered a standardized proto-
col however, for various reasons it is still open to attacks, particularly
Man-in-The-Middle (MiTM). To secure OF based switch to controller

communication, Agborubere et al. (Agborubere and Sanchez-Velazquez,
2017) proposed enhancement in TLS by presenting the client’s certifi-
cate to the server for authentication. The server may send a randomized
re-verification request to the client along with a time frame. Moreover,
the client’s Hello message ID can be used for verification.

Kloti et al. (Klöti et al., 2013) presents a security analysis of Open-
Flow by using STRIDE (Hernan et al., 2006) vulnerability modeling
technique. It shows that Denial of Service (DoS) and Information Dis-
closure attacks can be easily launched against OF devices. During a DoS
attack, rate-limiting techniques are recommended which allow the con-
troller to remain responsive along with event filtering which increases
system resilience. Flow aggregation which is a proactive approach can
also resolve DoS by making flow tables less prone to overflows. Attack
detection can also be used as a controller application. Information dis-
closure attacks expose the state and services of the network. Proac-
tive strategies are recommended to overcome this issue, however, this
may create unnecessary overhead. Samociuk (Samociuk, 2015) presents
another study which analyzes the pros, cons, usability, and implementa-
tion of TLS, Secure SHell (SSH), and IPSec protocols as a secure medium
for OpenFlow communication between data plane and control plane.

Insights: Communication between data plane and control plane is
the main functionality of SDN, therefore making this communication
secure is fundamental. Since TLS protocol is not mandatory, all the SDN
solution vendors may not implement it. At the same time, many vulner-
abilities may still be hidden due to a lack of TLS based deployment.
Hence, large scale testbeds for experimental evaluation of security may
reveal more information.

4. Northbound interfaces (NBI) in SDN

Northbound Interface is one of the key pillars of SDN, as it provides
programming abstraction for networks. It acts as a bridge between the
control and management plane and provides a high-level abstraction
for application development. The application development in the man-
agement plane is not as easy as it should be, and the main reason for
it is the lack of standardization of the northbound interface. Unlike
OpenFlow, there is no single API or protocol which different develop-
ers/vendors can use. One reason for this lack of standardization is the
variation in applications and their requirements. Northbound Interface
Work Group (NBIWG) (NBIWG, 2020) is an initiative of ONF (ONF,
2020), which was established for standardization purposes. However, it
has witnessed little success, and because of this some controllers (e.g.
Onix (Koponen et al., 2010), PANE (Ferguson et al., 2013), etc.) provide
high-level APIs for their application development in SDN. Furthermore,
programs and most of the controllers usually use REST API as North-
bound Interface.

The working of SBIs is more like a protocol for communication,
whereas NBIs are used for different objectives (Chen and Wu, 2017).
identifies some key properties of NBIs. Using it as a rudimentary guide-
line, we group the literature of northbound interfaces on the following
properties: portability, programmability, controller based, intent-based,

11

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Ta
bl

e
5

Su
m

m
ar

y
of

pr
op

os
al

s
fo

r
In

te
rn

et
of

Th
in

gs
.

Li
te

ra
tu

re
O

bj
ec

tiv
e

So
lu

tio
n

Be
ne

fit
s

SB
IU

se
d

Ch
an

ge
s

in
SB

I
Li

m
ita

tio
ns

Sa
lm

an
et

al
.(

Sa
lm

an
et

al
.,

20
15

)
Is

su
es

of
sc

al
ab

ili
ty

,
re

lia
bi

lit
y

an
d

he
te

ro
ge

ne
ity

Im
pl

em
en

ta
tio

n
of

ga
te

w
ay

s
ru

nn
in

g
ge

ni
us

al
go

ri
th

m

Pr
ov

id
es

co
nt

ro
lo

n
Io

T
de

vi
ce

s
by

ex
te

nd
in

g
O

pe
nF

lo
w

O
pe

nF
lo

w
N

ot
di

sc
us

se
d

N
o

im
pl

em
en

ta
tio

n
av

ai
la

bl
e.

Ex
te

ns
io

ns
in

O
pe

nF
lo

w
ar

e
no

t
di

sc
us

se
d

pr
op

er
ly

Li
et

al
.(

Li
et

al
.,

20
16

)
Re

so
ur

ce
sh

ar
in

g
an

d
in

te
ro

pe
ra

bi
lit

y
D

at
a

pr
oc

es
si

ng
an

d
st

or
ag

e
ce

nt
er

Su
pp

or
ts

m
ul

tip
le

se
rv

ic
es

an
d

in
te

ro
pe

ra
bi

lit
y

O
pe

nF
lo

w
A

dd
iti

on
of

tw
o

fie
ld

s
in

O
pe

nF
lo

w
he

ad
er

Se
cu

ri
ty

de
si

gn
s

ar
e

no
t

fo
cu

se
d

O
jo

et
al

.(
O

jo
et

al
.,

20
16

)
Sc

al
ab

ili
ty

an
d

M
ob

ili
ty

U
se

of
So

ftw
ar

e
D

efi
ne

d
G

at
ew

ay
s

in
st

ea
d

of
tr

ad
iti

on
al

G
at

ew
ay

s

En
ha

nc
es

ne
tw

or
k

effi
ci

en
cy

an
d

ag
ili

ty
O

pe
nF

lo
w

,O
vS

D
B,

BG
P,

PC
EP

,N
et

Co
nf

N
ot

di
sc

us
se

d
N

o
im

pl
em

en
ta

tio
ns

av
ai

la
bl

e.
Ex

te
ns

io
ns

in
so

ut
hb

ou
nd

pr
ot

oc
ol

s
ar

e
no

t
di

sc
us

se
d

Q
in

et
al

.(
Q

in
et

al
.,

20
14

)
H

et
er

og
en

eo
us

na
tu

re
of

di
ffe

re
nt

te
ch

no
lo

gi
es

an
d

In
te

ro
pe

ra
bi

lit
y

Io
T

M
ul

ti-
ne

tw
or

k
Co

nt
ro

lle
r

Pr
ov

id
es

fle
xi

bl
e,

eff
ec

tiv
e

an
d

effi
ci

en
t

m
an

ag
em

en
t

O
pe

nF
lo

w
lik

e
Pr

ot
oc

ol
N

ot
di

sc
us

se
d

La
ck

s
in

de
ta

ils
of

so
ut

hb
ou

nd
pr

ot
oc

ol

CE
N

SO
R

(C
on

ti
et

al
.

20
19

)
En

ha
nc

e
se

cu
ri

ty
an

d
pe

rf
or

m
an

ce
Io

T
ag

en
ts

an
d

co
nt

ro
lle

r
w

ith
re

m
ot

e
at

te
st

at
io

n
co

m
po

ne
nt

Im
pr

ov
es

pe
rf

or
m

an
ce

an
d

se
cu

ri
ty

O
pe

nF
lo

w
N

ot
di

sc
us

se
d

N
o

di
sc

us
si

on
ab

ou
tfl

ow
in

st
al

la
tio

n

D
es

ai
et

al
.(

D
es

ai
et

al
.,

20
16

)
Be

tt
er

Co
nt

ro
lo

n
Io

T
H

et
er

og
en

eo
us

D
ev

ic
es

In
tr

od
uc

ed
O

pe
nF

lo
w

en
ab

le
d

m
an

ag
em

en
t

de
vi

ce
us

in
g

Li
nu

x
ke

rn
al

Su
pp

or
ts

he
te

ro
ge

ne
ou

s
Io

T
de

vi
ce

s
to

co
m

m
un

ic
at

e
w

ith
Re

m
ot

e
Pr

oc
es

si
ng

sy
st

em
s

in
cl

ou
d

O
pe

nF
lo

w
N

ot
di

sc
us

se
d

N
o

di
sc

us
si

on
ab

ou
tfl

ow
in

st
al

la
tio

n

and virtualization.
Portability provides low-level abstraction and is used to resolve the

compatibility issues among different versions of OpenFlow or other
southbound APIs and different hardware. It provides the guarantee of
correct packet processing on a wide range of data plane devices. Pro-
grammability refers to the use of high-level programming languages or
dedicated languages for SDN. By using high-level languages, networks
can be configured for the services required, which is referred to as pre-
scribed usage. Whereas, there is an intent-based usage of NBIs, which
is opposite to prescribed usage. In this model, application require-
ments are described in natural language and the controller is intelligent
enough to integrate desired services with its core functionality.

Due to the absence of a standardized northbound interface, many of
the controllers use ad-hoc APIs. Whereas, some of the controllers pro-
posed their high-level interfaces referred to as controller-based APIs.
Moreover, some of the controllers also support intents where high-level
policies can be declared. Interfaces allow the sharing of resources of
underlying network devices in virtualization and reduce capital and
operational costs. Due to the blurriness of virtualization techniques in
SDN, we have discussed virtualization as a separate section. In this
section, we discuss portability, programmability, controller based, and
intent-based NBIs.

4.1. Portability in NBI

A reason which hinders application development is a gap between
hardware vendors and application developers which reduces portabil-
ity i.e. guarantee of correct packet processing and performance over a
wide range of network switches. There are a large number of different
(hardware and software) switching products available from dozens of
vendors, which differ in the data plane, switch-controller interaction,
and fixed/flexible pipeline (Banks, 2020).

Software Friendly Networking (SFNet) (Yap et al., 2010) provides
an interface between the control and application planes of the SDN
paradigm with a role to hide the lower network protocols from the
application. It is a high-level API and directly interacts with the under-
lying network. It translates application requirements and programs net-
work accordingly to provide services. It uses a JSON file to send infor-
mation requests and congestion reports from the network to find a bet-
ter path among hosts. In case of congestion, it allows applications to
back off if they choose to do so. It can be beneficial in case of delay sen-
sitive traffic. It also supports bandwidth reservations and grants/denies
the request depending upon the availability of requested bandwidth.
This requirement of bandwidth can be prioritized for video on demand
or Voice over IP (VoIP) traffic. It also supports multicasting to a set of
IP addresses participating in it.

NOSIX (Yu et al., 2014) addresses the problem of a diverse range of
underlying switches to enhance performance. It proposes the use of Vir-
tual Flow Table (VFT) which is a basic component used by applications
to freely define the rules without any concern of delays and through-
put of updates and notifications. It allows applications to predefine the
VFTs pipeline and then install rules in these tables. The predefinition of
a pipeline is allowed because it is difficult to perform dynamic recon-
figuration of a physical pipeline of switches. Moreover, the rules in
VFTs do not need to be always in the physical flow tables of a switch.
Switch drivers, on the other hand, maps the VFT pipeline onto a phys-
ical pipeline available on the switch. The switch driver can be placed
either at the lower layer of the controller or on the switch itself. How-
ever, it is beneficial to place switch drivers at the lower stack of the
controller because it is easy to program a software-based switch-driver
at the controller than a switch. In NOSIX, control applications can be
written as a pipeline of VFTs and vendor-supplied drivers then trans-
form them into switch configuration.

Another solution is tinyNBI (Casey et al., 2014) which is a language-
independent solution and resolves portability issues in terms of different
OpenFlow versions and specifications. It is designed in C language, and

12

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

provides a complete set of OpenFlow semantics and handles multiple
versions of OpenFlow and variable switch capabilities without requir-
ing any additional efforts. The main purpose of this NBI is to provide a
foundational interface for application development. It uses a data model
that makes a clear distinction between control and data plane abstrac-
tions. Every abstraction has three components; configuration, capabil-
ities, and statistics. The configuration is modifiable data by the inter-
face. Capabilities describe the behavior of abstractions and it is a non-
modifiable state. Whereas, statistics are read-only data and describes
how abstraction has behaved. All the abstractions are not present in all
OpenFlow versions (e.g. Meter Table, Group Table). Abstractions that
are not available are handled in three ways; seamless emulation, switch
offloading and error indication. Seamless emulation defines the abstrac-
tion but with limited capabilities. Switch offloading represents offload-
ing of missing switch capabilities to the controller. In some scenarios,
it is not possible to provide missing behavior which provides an error
indication. It is not a high-level interface and does not provide infor-
mation like network topology, switching, routing, or load balancing.
Instead, it provides independence from the ever-changing structure and
semantics of OpenFlow and provides maximum portability and re-use
potential.

Insights: One of the major responsibilities of NBI is to provide infor-
mation on underlying devices to developers. However, there is a diverse
range of underlying devices and southbound protocols. Portability pro-
vides solutions for compatibility issues of this diversity of network ele-
ments and protocols. Table 6 presents a summary of different propos-
als for portability in NBIs. These solutions focus on either data plane
devices or protocols, but a single solution for both of these is still an
open research challenge.

4.2. Programmability of NBI

Similar to application development, which shifted from assembly
language to high-level languages like Python and Java, network lan-
guages have also shifted from low-level language (e.g. low-level lan-
guage used in OpenFlow) to high level (e.g. Frenetic, Procera, etc.).
These high-level languages in SDN provide flexibility in network man-
agement and make it less error-prone.

Current network elements often perform multiple tasks simultane-
ously (e.g. routing, monitoring, access control, etc.). However, decou-
pling these tasks is almost impossible, because packet handling rules
installed by one can conflict with another. OpenFlow interface is
defined at a very low level of abstraction which directs capabilities of
the switch hardware. To apply high-level concepts, programmers can
not directly use the OpenFlow instruction set. Another issue with Open-
Flow is that, packets are processed by the controller if the switch cannot
process them due to lack of flow information, hence programmers have
to perform two-tier programming, one for the packets being processed
at the controller and other which need to be processed at the switch
level. The literature related to NBI programming languages has been
discussed in the following sub-section. Before it, we have identified dif-
ferent properties of such languages.

4.2.1. NBI programming language feature classification
The feature classification of NBI-PL is shown in Fig. 10. Here we

give a brief description of each feature.
Flow Installation refers to the way in which forwarding rules can be

installed on switches: i.e. Reactive and Proactive. Almost all of the lan-
guages provide a reactive approach, however, some additionally pro-
vide proactive flow installation capabilities. In a reactive approach,
when a new packet arrives at the switch, and no flow information is
available, then this packet is forwarded to the controller, which based
on its program logic, installs flows in the flow table of the switch. This
method introduces latency as every new packet will be sent to the con-
troller for flow installation. On the other hand, the proactive approach

Ta
bl

e
6

Su
m

m
ar

y
of

Po
rt

ab
ili

ty
so

lu
tio

ns
in

N
BI

Pr
op

os
al

s.

Li
te

ra
tu

re
O

bj
ec

tiv
e

So
lu

tio
n

Be
ne

fit
s

SF
N

et
(Y

ap
et

al
.,

20
10

)
In

te
ra

ct
io

n
am

on
g

ap
pl

ic
at

io
ns

an
d

un
de

rl
yi

ng
de

vi
ce

s
U

se
s

pl
ug

-in
s

fo
r

va
ri

ou
s

ap
pl

ic
at

io
ns

A
llo

w
s

ba
nd

w
id

th
re

se
rv

at
io

ns
,m

ul
ti-

ca
st

in
g

an
d

su
pp

or
ts

co
ng

es
tio

n
in

qu
ir

y
N

O
SI

X
(Y

u
et

al
.,

20
14

)
Sw

itc
h

di
ve

rs
ity

an
d

pe
rf

or
m

an
ce

en
ha

nc
em

en
t

Vi
rt

ua
lF

lo
w

Ta
bl

e
(V

FT
)a

nd
Sw

itc
h

D
ri

ve
r

Pr
ov

id
es

fle
xi

bi
lit

y
to

pr
og

ra
m

m
er

s
fo

r
a

di
ve

rs
e

la
nd

sc
ap

e
of

da
ta

pl
an

e
de

vi
ce

s
tin

yN
BI

(C
as

ey
et

al
.,

20
14

)
Fo

un
da

tio
na

li
nt

er
fa

ce
fo

r
O

pe
nF

lo
w

ve
rs

io
ns

U
se

s
da

ta
m

od
el

to
ab

st
ra

ct
sp

ec
ifi

ca
tio

ns
Su

pp
or

ts
m

ul
tip

le
ve

rs
io

n
of

O
pe

nF
lo

w
an

d
pr

ov
id

es
ex

te
ns

ib
ili

ty

13

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 10. Feature classification of NBI programming languages in SDN.

eliminates latency as every packet is not sent to the controller for for-
warding rules. Predefined rules and actions are installed in flow tables.
Languages that perform proactive installation, pre-compute forwarding
tables for the whole network, and controller only modifies flow tables
in case of link failure or other external events.

Policy Definition is a set of aggregated rules for the network, and
each policy is a set of conditions and a corresponding set of actions
where condition defines which policy rule will be applied. Policy defini-
tions are classified into static and dynamic policies. Static policies (most
traditional methods for firewall filters) are a predefined set of rules and
actions. Dynamic policies, on the other hand, can be changed according
to network conditions. Although most languages have dynamic capabil-
ities, there are some which only work with the static policy definition.

Programming Paradigm reflects different ways of building the struc-
ture and elements of any program. There are two different paradigms
in SDN programming: imperative and declarative. Imperative paradigm
can be viewed as a traditional programming structure and allows the
programmer to specify all the steps to solve any particular problem.
In the declarative paradigm, one only needs to specify what program
must do, not how to do it (Qadir and Hasan, 2015). The most known
example of declarative paradigm is Structured Query Language (SQL),
where a query is stated and the database engine executes it. The declar-
ative paradigm has further three sub-paradigms: logic programming,
event-driven, and functional programming. In Logic Programming, the
compiler applies an algorithm that scans all possible combinations to a
set of defined inference rules to postulates and resolves a query. Event
Driven Programming allows the program to respond to any particular
event. As soon as an event is received, automatic action is triggered.
This action can either be some computation or trigger another event.
Functional Programming acts as an evaluation of some mathematical
functions and avoids state changes. The Reactive Programming in the
declarative paradigm facilitates programs to react to external events.
For example, a spreadsheet which typically has values or formulas in
its cells. Whenever cell changes, formulas are recalculated automati-
cally. A combination of functional and reactive programming makes
Functional Reactive Programming (FRP) which models reactive behavior
in functional languages. Programs in FRP correspond to mathematical
functions in a declarative manner.

4.2.2. Programming languages for NBI
Here we present a list of programming languages specifically

designed for SDN usage. Table 7 presents a listing of the classification
features of these languages.

Frenetic (Foster et al., 2011), embedded in Python, proposes two
levels of abstraction which includes a set of source level operators for
constructing and manipulating streams of network traffic, and a declar-

ative system that handles all the details of installing and un-installing
low-level rules on switches. It provides a declarative solution with a
modular design. Using Frenetic, programmers do not need to be con-
cerned about flow rule installation which may prevent the controller
from analyzing other traffic. Flow-based Management Language (FML)
(Hinrichs et al., 2009) is a high-level declarative language based on data
log for policy configuration about a verity of management tasks within
a single framework for large enterprise networks. The main issue with
FML is that it applies policy on all packets of any particular flow and
does not provide much flexibility. Flog (Katta et al., 2020) is another
event-driven and forward chaining language for SDN which combines
the idea of FML and Frenetic as it follows logic programming tech-
nique as FML and factored programs in three components like Frenetic:
a method to query network state, a component to process data gener-
ated after queries, and a mechanism to generate rules for installing on
network elements. It uses event-driven and logic paradigms, and pro-
grams in this language execute upon the occurrence of an event in the
network.

To design the network policies, a language must be expressive
enough to capture these policies. Procera (Voellmy et al., 2012), as
compared to FML, is more expressive and handles policies in a bet-
ter manner. It allows network operators to define policies that react to
dynamic changes in different network conditions. It provides an exten-
sible, expressive, and compositional framework. An up-gradation of Fre-
netic is proposed by the same developers as Pyretic (Monsanto et al.,
2013), which is a Python-based platform that allows application devel-
opers to design sophisticated applications. Same as Procera it also helps
in policy-based application design. It tries to resolve the shortcoming
in OpenFlow in terms of its programming nature and its role as a pro-
gramming interface to switch in the network. Policies in Pyretic support
modular programming and also facilitates the creation of dynamic poli-
cies.

NetCore (Monsanto et al., 2012) provides packet forwarding policies
in SDN which is expressive, compositional, and has formal semantics.
Rather than using the SDN controller, NetCore provides compilation
algorithms and couples them with the run time system which issues
flow installation rule commands. It exclusively focuses on flow tables
simplicity but lacks expressiveness. To solve this issue, FlowLog (Nelson
et al., 2014) which is a tier-less programming language, provides flexi-
bility to use external full-featured libraries. Nettle (Voellmy and Hudak,
2011) using the mantra “Don’t Configure the Network, Program it!” adopts
ideas from Function Reactive Programming (FRP) and design method-
ology from Domain Specific Language (DSL), is embedded in strongly
typed language Haskell (which works as a host language). It can be
understood as signal functions used in electrical signals and provides
flexibility to change these functions as well as retrieve discrete-time

14

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Ta
bl

e
7

Fe
at

ur
e

ba
se

d
su

m
m

er
y

of
SD

N
la

ng
ua

ge
s

fo
r

N
BI

s.

Li
te

ra
tu

re
Fl

ow
In

st
al

la
tio

n
Pr

og
ra

m
m

in
g

D
es

cr
ip

tio
n

Re
ac

tiv
e

Pr
oa

ct
iv

e
Po

lic
y

D
efi

ni
tio

n
Pa

ra
di

gm

Fr
en

et
ic

(F
os

te
r

et
al

.,
20

11
)

✓
–

D
FR

D
es

ig
ne

d
to

av
oi

d
ra

ce
co

nd
iti

on
by

us
in

g
w

el
ld

efi
ne

d
hi

gh
le

ve
lp

ro
gr

am
m

in
g

ab
st

ra
ct

io
n

FM
L

(H
in

ri
ch

s
et

al
.,

20
09

)
✓

–
S

L
D

es
ig

ne
d

fo
r

po
lic

y
de

fin
iti

on
in

en
te

rp
ri

se
ne

tw
or

ks
Fl

og
(K

at
ta

et
al

.,
)

✓
–

D
L/

ED
Ex

ec
ut

es
pr

og
ra

m
s

on
ev

en
to

cc
ur

re
nc

e
in

ne
tw

or
k

Pr
oc

er
a

(V
oe

llm
y

et
al

.,
20

12
)

✓
–

D
FR

A
n

ex
pr

es
si

ve
la

ng
ua

ge
an

d
us

ed
fo

r
po

lic
y

ha
nd

lin
g

an
d

pr
ov

id
e

an
ex

te
ns

ib
le

an
d

co
m

po
si

tio
na

lf
ra

m
ew

or
k

Py
re

tic
(M

on
sa

nt
o

et
al

.,
20

13
)

✓
✓

D
I

A
n

up
gr

ad
e

of
Fr

en
tic

an
d

al
so

us
ed

fo
r

po
lic

y
ha

nd
lin

g
in

a
tr

an
sp

ar
en

tf
ra

m
ew

or
k

N
et

tle
(V

oe
llm

y
an

d
H

ud
ak

,2
01

1)
✓

✓
D

FR
A

llo
w

s
pr

og
ra

m
m

er
s

to
de

al
w

ith
st

re
am

s
in

st
ea

d
of

ev
en

ts
an

d
ca

n
be

un
de

rs
to

od
as

si
gn

al
fu

nc
tio

ns
N

et
KA

T
(A

nd
er

so
n

et
al

.,
20

14
)

✓
✓

D
F

Pr
ov

id
es

re
as

on
in

g
fo

r
ne

tw
or

k
m

ap
pi

ng
an

d
tr

affi
c

is
ol

at
io

n
us

in
g

Kl
ee

ne
A

lg
eb

ra
an

d
Te

st
s

N
et

Co
re

(M
on

sa
nt

o
et

al
.,

20
12

)
✓

✓
D

FR
Pr

ov
id

es
m

ea
ns

fo
r

pa
ck

et
fo

rw
ar

di
ng

po
lic

ie
s

an
d

ge
ne

ra
te

flo
w

in
st

al
la

tio
n

co
m

m
an

ds
Fl

ow
Lo

g
(N

el
so

n
et

al
.,

20
14

)
✓

✓
D

F
A

llo
w

s
pr

og
ra

m
m

er
s

to
us

e
ex

te
rn

al
fu

ll
fe

at
ur

ed
lib

ra
ri

es
Fa

tT
ir

e
(R

ei
tb

la
tt

et
al

.,
20

13
)

✓
✓

D
F

Pr
ov

id
es

fa
ul

tt
ol

er
an

ce
in

th
e

ne
tw

or
ks

an
d

de
sc

ri
be

ne
tw

or
k

pa
th

s
Ki

ne
tic

(K
im

et
al

.,
20

15
)

✓
✓

D
ED

D
om

ai
n

Sp
ec

ifi
c

La
ng

ua
ge

th
at

al
lo

w
st

o
co

nt
ro

lt
he

ne
tw

or
k

dy
na

m
ic

al
ly

M
er

lin
(S

ou
lé

et
al

.,
20

13
)

✓
–

D
F

D
el

eg
at

es
su

b-
po

lic
ie

s
to

di
ffe

re
nt

te
na

nt
s

an
d

al
lo

w
th

em
to

m
od

ify
ac

co
rd

in
g

to
th

ei
r

re
qu

ir
em

en
ts

Le
ge

nd
:D

=
D

yn
am

ic
,S

=
St

at
ic

,I
=

Im
pe

ra
tiv

e,
ED

=
Ev

en
tD

ri
ve

n,
FR

=
Fu

nc
tio

na
lR

ea
ct

iv
e,

L
=

Lo
gi

c,
F=

Fu
nc

tio
na

l.

and contentious time values.
Another proposal for network programming in SDN is NetKAT

(Anderson et al., 2014) which uses a mathematical structure called
Kleene Algebra for tests and provides solid mathematical semantic foun-
dations. It provides an equational theory for reachability, traffic isola-
tion and compiler correctness of algorithms.

FatTire (Reitblatt et al., 2013) provides forwarding and fault tol-
erance policies. It allows programmers to set legal paths through the
network along with the fault tolerance of those paths. Network condi-
tions are always changing and operators have to change the configura-
tion manually. Kinetic (Kim et al., 2015), based on Pyretic, proposed
an intuitive mechanism to change these configurations dynamically. It
expresses network policy as a Finite State Machine (FSM) which cap-
tures dynamics and amenable to verifications. It also verifies the cor-
rectness of these high-level specifications.

To manage the networks, administrators need to configure their net-
work very carefully because the misconfiguration of a single device may
bring an undesired behavior to the whole network. By using Merlin
(Soulé et al., 2013), administrators can express policies in a high-level
declarative language. Merlin compiler uses program partitioning to
transform global policies to smaller sub-policies which are distributed
to different components of the network automatically, and delegates
these sub-policies to different tenants who can modify them to reflect
their custom requirements.

To provide QoS in traffic routing using SDN and Northbound
Interface, Software-Defined Constrained programming Routing (SCOR)
(Layeghy et al., 2016) is another solution that is based on Constrained
Programming (CP). SCOR divides NBI into two layers: the upper layer is
CP Based Programming Language, and the lower layer is QoS Routing and
Traffic Engineering Interface. The lower layer is defined to address the
requirements and has nine predicates: i.e. network path, capacity guar-
antee, delay, path cost, etc. SCOR is implemented in MiniZinc (Nether-
cote et al., 2007) which is declarative constrained programming.

4.2.3. Insights on NBI programmability
SDN languages are evolving to enhance the abstractions for pro-

grammability in networks. Several SDN languages can take advantage
of some new features of OpenFlow. However, it requires adding new
libraries and active support from the research and development com-
munity. Currently, SDN languages have limited libraries as well as
community-based contributions, which can be an active area for devel-
opment.

4.3. Controller-based and intent-based NBIs

The absence of a standard northbound interface (or any framework
for it) has allowed different vendors to package their customized solu-
tions for their controller products. Some of the controllers provide their
high-level interface, whereas some use ad-hoc APIs. In this subsection,
we highlight four NBIs which are specific to controllers. The objective
is not to discuss the controller itself, but rather dissect the NBI solution.
Out of these four, two (Onix and PANE) proposed their high-level API,
whereas the two most popular controllers (OpenDaylight and ONOS)
use multiple APIs for different northbound functionalities. In addition,
we discuss a new type of NBI which is based on intent (policy rather
than the specification) of the application.

Controller-based NBIs: Participatory Networking (PANE) (Ferguson
et al., 2013) is an example of an SDN controller, which provides its
high-level API. This API between the control plane and applications
allows reading the current state of the network and writing configura-
tion. It involves two major issues; 1) decompose the control and visibil-
ity of the network, and 2) resolve the conflicts between different partic-
ipants. To solve these issues, it uses three types of messages; requests,
queries, and hints. Request messages are used for network resources

15

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

(e.g. bandwidth and access control). A request may affect the state of
the network for a time interval. Queries are used to read the network
state (e.g. traffic between hosts and bandwidth available). Hints provide
the network information which may help to improve the network per-
formance. Moreover, it provides an API where end-host applications can
dynamically request network resources (e.g. bandwidth reservation). To
avoid starvation and exceeding the bandwidth limits set by the admin-
istrator, it uses a verification engine. Although very useful, the effect of
excessive requests is not addressed in this work.

Onix (Koponen et al., 2010) is another example of a controller
that provides its northbound interface. It defines a general API which
enables scalable application development. It also allows control appli-
cations to read and write the state of network elements. Moreover, it
uses a data-centric approach that provides consistency between con-
trol applications and underlying network devices. It consists of a data
model, representing network infrastructure, where each network ele-
ment corresponds to one or more data objects. Control logic reads the
current state associated with a particular object, operates on this object
to alter the state, and registers notifications for state changes on this
object. A copy of these notifications and changes are also placed in Net-
work Information Base (NIB). Detailed discussion on NIB is given in
Section VI.

ONOS (Berde et al., 2014) is one of the most popular open source
SDN controllers which is driven by OpenNetworks Laboratory (ON-
Lab) founded in 2012. ONOS mainly focuses on scalability, high perfor-
mance, resilience, and next-generation device support. It uses a collec-
tion of Open Services Gateway initiative (OSGi) bundles and provides
interaction with applications by using Java and REST APIs. It supports
both command line and graphical user interface to provide flexibility
in application development and network administration through REST
API. It also provides a wide range of templates for the development
of new applications. Due to the distributed nature of this controller,
it uses general-purpose Remote Procedure Call (gRPC) (gRPC, 2020)
which simplifies the creation of distributed applications. In gRPC, meth-
ods of a client application can be called directly on server application,
running on a different machine, as it was a local object.

Another open source project is OpenDaylight (2020), a founding
member of Linux Foundation Networking (LFN), which is widely sup-
ported by industry and research community. This controller project
was started in 2013 and written in Java with a focus on network
programmability. OpenDaylight also uses OSGi bundles which run as
Apache Karaf (Karaf, 2020) components. DLUX (DLUX, 2020) in Open-
Daylight is used as a web-based interface and represents several features
including a graphical user interface for topology representation. Most
of the interfaces can be visualized through Yang-User Interface (Yan-
gUI, 2020). Yang-UI is a collection of REST APIs which enable develop-
ers to query network information as well as configure it. For example,
the network topology component in Yang-UI provides comprehensive
information about the whole network, and the inventory component
provides detailed information about statistics.

Comparing ONOS and ODL is interesting as both are written in Java,
however, they have significant differences. From the controller’s per-
spective, the main focus of ODL is to bring legacy (BGP, SNMP, etc.) and
next-generation networks together. whereas, ONOS focuses on enhanc-
ing the performance of the network. Both of them offer GUI, however,
ONOS has a cleaner presentation style. In terms of scalability, ODL can
scale up to 400 switches but ONOS is not able to scale to this extent.
Works in (Zhu et al., 2019) & (Badotra and Panda, 2019), present a
detailed comparative analysis of these controllers. Although (Zhu et al.,
2019) includes many other controllers also, both these works conclude
that ODL is more feature-rich and performs better.

Intent-based NBIs: The adoption of SDN critically depends on its
ability to support multiple types of applications through NBI. Most of
the solutions for NBI are ad-hoc, vendor specific and have limited capa-
bilities. The intent-based model attempts to resolve these issues and

allows the declaration of high-level policies, instead of a detailed spec-
ification of different networking mechanisms. The above-mentioned
ONOS and OpenDaylight controllers also support intent-based north-
bound interfaces.

The intent framework of ONOS allows applications to specify their
requirement of network control in the form of policies instead of mech-
anisms (Intent framework, 2020). These policy-based directives are
referred to as Intent. These high-level intents are translated into instal-
lable forwarding rules which are essential operations to control net-
work. Moreover, these intents can be identified by using two parame-
ters; Application_ID and Intent_ID. Application_ID represents an appli-
cation that creates a particular intent. Whereas, Intent_ID is generated
whenever an intent is created. As soon as the intent is submitted by an
application, it is directly sent to the compilation phase. This phase uses
an intent compiler, which converts them into installable intents. If an
application asks for an unavailable objective (e.g. connectivity among
non-connected segments), this phase will see for an alternate approach
to recompile. After compiling an intent, it is sent to the installing phase,
where an intent installer is responsible to convert installable intents into
flow rules. An intent manager provides coordination between intent
provider and intent installer.

Network Intent Composition (NIC) (Rodrigues, 2020) is an internal
project of OpenDaylight which is currently in the incubation state. NIC
provides interaction between core modules of OpenDaylight or exter-
nal applications to fulfill user desires. It uses current network service
functions of OpenDaylight and southbound interfaces to control virtual
and physical network elements. In OpenDaylight, a component referred
to as renderer is used to transform the intents to the implementation
of flow rules. A wide range of renderers is supported in various ver-
sions of OpenDaylight, which includes; Network Modeling (NEMO) ren-
derer, OpenFlow renderer, Virtual Tenant Network (VTN) renderer, and
Group-Based Policy (GBP) renderer. There are two core functions (i.e.
hazelcast and MD-SAL) that supply the base models for NIC capability.
On top of these functions, a renderer can be installed. This renderer
transforms an intent using a particular project (e.g. VTN, NEMO, etc.)
for network modifications. For example, the NEMO renderer is a feature
that will transform an intent to a network modification by using NEMO
project (NEMO, 2015,2020) in OpenDaylight.

To create new services as well as to compose or split current services
of network applications, Pham et al. (Pham and Hoang, 2016) proposed
a solution for intent-based NBI. The design principles of this study are
data decentralization, web service components, process isolation, and
robustness. Moreover, it proposed a three-tier architecture. To provide
flexibility, these tiers work independently (i.e. every tier can change its
components without affecting other tiers). The tiers are database tier,
business logic tier, and presentation tier. Application states are stored in
the database tier, which can be retrieved in different contexts. Service
creation and composition is handled by the business tier. In this tier,
a service registry is used to discover existing services whereas, new
services can be created as atomic service. To integrate new and exist-
ing services, service integration element is used. By using CLI, REST,
and programming interface, the presentation tier takes input from the
user. To analyze the process it uses Domain-Driven Design (DDD) where
requirements are decomposed into smaller problems and the solution
for each problem is built. For example, composite intents are decom-
posed into based intents which are further decomposed into solution
intents.

Insights: Due to a diverse range of controller-based NBIs, applica-
tions designed for one controller may not work for any other controller.
However, it is a good initiative to have intent based NBIs but only a
few controllers support it. Table 8 presents a summary of different con-
troller based and intent-based NBIs, where OpenDaylight and ONOS
support both controllers based and intent-based NBIs. PANE and Onix
offer their own NBIs. Unlike the southbound interface, a mature and
comprehensive solution for NBIs is still missing.

16

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Table 8
Controller based and intent based NBIs.

Controller/Literature NBI Controller or Intent based GUI Security

OpenDaylight (OpenDaylight, 2020) OSGi and REST APIs Both Yes Strong
Onix (Koponen et al., 2010) Onix API Controller No Average
PANE (Ferguson et al., 2013) PANE API Controller No Weak
ONOS (Berde et al., 2014) Java and REST APIs Both Yes Strong
Pham et al. (Pham and Hoang, 2016) Programming APIs, CLI and REST API Intent Yes Weak

4.4. Security in northbound interfaces

The centralized architecture of SDN gives the controller a global
view and access to the network, which requires that the controllers
and northbound interfaces must be secured. A lack of security in these
interfaces can allow applications to gain full access to the underlying
network elements. However, few articles in literature address NBI secu-
rity issues. Banse et al. (Banse and Rangarajan, 2015) proposed a web-
based northbound interface that is not only secure but also controller
independent and supports external applications. Applications require
special permission each time they access or modify resources. The per-
missions of the messages can be varied. For example, an application
can generate messages to create new flows but not for the configura-
tion. Similarly, applications may require permission for different events
like topology events, message events, and application events.

Some other challenges like unauthorized access of controller, illegal
function calls, malicious flow entry injection, exhausting resources, and
Man-in-The-Middle (MiTM) are addressed by ControllerSEPA (Tseng et
al., 2016). To solve these issues authors suggested solutions like authen-
tication, authorization, accounting, flow rule verification, application
isolation, and application monitoring. Moreover, security enhancing
plug-in for OpenFlow application is proposed which sets up a con-
nection with controller and permission is delegated to ControllerSEPA.
Applications can only communicate with the services which are pro-
vided by ControllerSEPA. To overcome information disclosure, Con-
trollerSEPA repacks all the services of controllers and provides new APIs
to applications that also solve controller specification problems.

OpenDaylight in AAA project (OpenDaylight AAA project, 2020)
uses a token that can be accessed after providing user name and pass-
word and later this token can be used by the application or services
to access the network resources. But this approach only authenticates
a user and not the application. Oktian et al. (Oktian, 2015) solves this
issue by using OAuth 2.0 (Hardt, 2012) protocol which authenticates
both user and application. In this approach, applications need to reg-

ister with an authentication server before accessing the network. After
registration, an API key and API secret are generated which are used to
identify and verify the application. Similar to application registration,
users can also be registered.

To avoid spoofing, disclosure of network resources, and temper-
ing application to controller messages in SDN based Vehicular Ad hoc
Networks (VANETs), BENBI (Weng et al., 2019) provides scalable and
dynamic access control. It uses Identity based Broadcast Encryption
where broadcaster transmits encrypted messages to all listeners. These
listeners are appointed by the broadcaster and they only can decrypt
the messages. Moreover, BENBI also supports multiple domains where
different administrators agree on the same secret key to provide secure
cross-domain communication.

Insights: The benefits of SDN control can be leveraged by third-party
applications through northbound interfaces. Unfortunately, the imple-
mentation of these interfaces is not standardized nor are the security
requirements for them. Hence, either the controllers only allow specific
propitiatory applications to communicate with, or leaves it to the appli-
cation designer to secure the communication. One promising direction
can be to wrap the controller in a security layer, which can provide
security for NBI communication as well as application access.

5. Virtualization and SDN interfaces

The objective of this section is to discuss the use of hypervisors and
NFV techniques (which enable virtualization) and their effect on south-
bound or northbound interfaces. SDN, NFV, and hypervisors are highly
complementary to each other and maximize network resource utiliza-
tion. Fig. 11 represents this relationship between SDN interfaces and
virtualization. Conventional SDN architecture is depicted in Fig. 11(a),
whereas a hypervisor is placed at the southbound interface as shown in
Fig. 11(b). In this scenario, a physical network is divided into mul-
tiple virtual networks to make slices, and different applications can
run on the virtual SDN controller. Sometimes tenants do not require

Fig. 11. SDN interfaces and virtualization.

17

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

a full-fledged controller. In this situation, virtualization schemes run as
a module on the controller as shown in Fig. 11(c). Thus, different ten-
ants can run their applications on a single controller using northbound
interfaces.

It is important to note, that the objective is not to discuss virtual-
ization for SDN, rather dissect the effect on interface communication.
OpenFlow networks have the potential to open the control of network
but only one user can work on network devices at a time. FlowVi-
sor (Sherwood et al., 2010a, 2010b) allows multiple users to operate
independently on their slices without any conflicts. FlowVisor acts as
a transparent proxy where OpenFlow messages generated by network
devices go to the FlowVisor from where they are routed to appropriate
users. In this way, FlowVisor acts as a virtual controller for underlying
switches and virtual switch for the users. It partitions the flow tables in
so-called flow-spaces and as a result OpenFlow switches can be manip-
ulated by multiple controllers. Furthermore, Auxiliary Software Datap-
ath is applied to overcome the limitation of flow table size in OpenFlow
switches.

AutoSlice (Bozakov et al., 2012) proposed another solution to the
virtualization of underlying network devices with the main focus on
scalability. It uses a hypervisor, placed between switch and controller,
which can handle a large number of flow table control messages and
multiple tenants. This hypervisor is composed of Management Module
(MM) and multiple Control Proxies (CPX) which can evenly distribute
the control load. Upon receiving a request, the Management Module
determines the appropriate Virtual SDN (vSDN) it belongs to, and CPX
installs flow entries accordingly.

OpenVirteX (Al-Shabibi et al., 2014) is an approach which provides
topology virtualization, address virtualization, and control function vir-
tualization. Tenants can request a topology by providing a mapping
between the elements in physical topology and desired virtual topol-
ogy. This virtual topology can either be an exact physical topology or a
subgraph of it. It also grants permission to tenants for custom address
assignments. Multiple addresses can cause problems at the time of flow
installation. To resolve this problem OpenVirteX generates a globally
unique tenant ID, to allow every tenant to run its network operating
system which maps various control functions for the virtual network.

Another virtualization scheme for WAN is AutoVFlow (Yamanaka
et al., 2014) which uses multiple controllers. It resides between switch
and controllers and uses the southbound interface for virtualization.
It allows delegation of configuration roles to multiple administrators
and implements a mechanism of flow space virtualization on Wide-Area
Network without any need for third party software as it is done in Open-
VirteX (Al-Shabibi et al., 2014).

In some cases, a tenant does not require full-fledged control over
the network. In such a situation, each tenant can use FlowN (Drutskoy
et al., 2013) which resides inside a controller and uses the northbound
interface. It allows tenants to run their applications over a single SDN
controller. Authors in (Drutskoy et al., 2013) used NOX as an SDN con-
troller to implement FlowN. Rather than running the controller for each
tenant, they used a shared controller for all the tenants. Virtualization
in FlowN is container-based where applications running on top of con-
troller consist of handlers that respond to network events. Each of these
applications has the illusion that they are running on their controller
rather than a shared one.

Network Hypervisor (Huang and Griffioen, 2013) seamlessly han-
dles the complexity of different levels of abstractions and a variety of
APIs in SDN. Similar to FlowN, it also acts as a controller to the appli-
cations and provides visualization of the underlying network devices.
By using this approach, SDN applications interact with Network Hyper-
visor through the northbound interface and compile the attributes of
respective APIs. It is implemented on top GENI testbed and supports
GENI API (Berman et al., 2014).

Network Virtualization Platform (NVP) (Koponen et al., 2014) uses
Onix (Koponen et al., 2010) controller platform where cloud tenants
can manage data center network resources by using OpenVSwitch

(OVS). Rather than tenants running their controller, it provides a virtual
slice to tenants to manage their resources by running their applications
through high-level API. It resides inside the controller and uses a north-
bound interface for virtualization purposes.

libNetVirt (Turull et al., 2012) is an approach that is used for virtu-
alization of networks in the same way as it can be done in machine vir-
tualization. It is divided into two components; i) generic interface, and
ii) drivers. Generic Interface is a set of functions that allows the interac-
tion between virtual networks. Drivers, on the other hand, are the tech-
nology dependent elements. For this virtualization scheme northbound
interface is involved. For the southbound interface, it is not dependent
on OpenFlow, and another proposal can also be used.

Insights: Table 9 presents a summary of virtualization techniques
along with the details of interfaces involved. Some proposals use hyper-
visor which is placed and works as a proxy between switches and con-
trollers. Whereas, in some cases, a full-fledged controller is not required
by tenants. In this case, the controller is divided into multiple virtual
controllers and tenants can run their application by using their slice of
the virtual controller.

6. East/westbound interface (E/WBI) in SDN

The main advantage of SDN is to provide a centralized view of the
network, but the exponential increase in network devices has led to
new challenges. On one hand, deploying a new SDN domain is a rel-
atively simple approach, but to make this new domain interoperable
with traditional Autonomous Systems (AS), is challenging. A common
method for this purpose is to use BGP for information sharing. Simi-
larly, PCEP (Vasseur and Roux, 2009) and GMPLS (Mannie, 2004) can
also be used for communication among SDN controllers and legacy net-
works (Kreutz et al., 2015). However, these solutions are not designed
for SDN, rather they are used as makeshift solutions. East/Westbound
Interface is used for interconnection between different SDN domains
or interaction between SDN and traditional network domains, where
east refers to SDN-SDN communication, and west refers to legacy-SDN
communication.

6.1. Interaction between SDN domains (eastbound APIs)

Centralized control of SDN makes network programmability & man-
agement simple, but for large scale networks, there are new challenges
like scalability, security, and availability (Wibowo et al., 2017).

∙ Scalability: A single controller can manage only a limited num-
ber of switches, which causes scalability issues. In SDN archi-
tecture, a centralized controller is a key artifact, but it also cre-
ates a performance bottleneck as soon as the number of switches
increases. It also introduces the risk of a single node failure prob-
lem.

∙ Security: A range of security problems may affect the SDN con-
troller and its performance. In the case of a large scale network
(Dhawan et al., 2015), a Denial of Service (DoS) attack may lead
to a worst case scenario.

∙ Availability: Every time a new packet arrives, data plane devices
need a controller’s involvement to process that packet. The over-
loaded controller may not be available for devices at all times.
For example, NOX (Gude et al., 2008) can handle 30 K flow
requests with a response time of less than 10 ms, but for larger
networks, it may be higher (Tootoonchian et al., 2012; Karakus
and Durresi, 2017).

Data Center Networks (DCNs), either copper (Pranata et al., 2019;
Majidi et al., 2019) or fiber (Yang et al., 2015, 2016) based, are prime
candidates where SDN is implemented, but due to its attractive fea-
tures, enterprise level networks have also adopted SDN. The implemen-
tation of SDN at the enterprise level is difficult due to the issues dis-
cussed above. A simple solution is the distribution of SDN controllers.

18

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Ta
bl

e
9

Su
m

m
ar

y
of

ap
pr

oa
ch

es
us

ed
fo

r
vi

rt
ua

liz
at

io
n.

Li
te

ra
tu

re
Pl

ac
em

en
t

Te
na

nt
’s

Co
nt

ro
lle

r
A

PI
s

In
vo

lv
ed

SB
IS

up
po

rt
D

es
cr

ip
tio

n

Fl
ow

Vi
so

r
(S

he
rw

oo
d

et
al

.,
20

10
a)

Be
tw

ee
n

Sw
itc

h
&

Co
nt

ro
lle

r
M

SB
I

O
F

To
pr

ov
id

e
an

is
ol

at
in

g
be

tw
ee

n
ex

pe
ri

m
en

ta
lt

ra
ffi

c
an

d
da

ta
tr

affi
c

A
ut

oS
lic

e
(B

oz
ak

ov
et

al
.,

20
12

)
Be

tw
ee

n
Sw

itc
h

&
Co

nt
ro

lle
r

M
SB

I
O

F
Im

pr
ov

e
sc

al
ab

ili
ty

by
ha

nd
lin

g
la

rg
e

nu
m

be
r

of
flo

w
ta

bl
es

O
pe

nV
ir

te
X

(A
l-S

ha
bi

bi
et

al
.,

20
14

)
Be

tw
ee

n
Sw

itc
h

&
Co

nt
ro

lle
r

M
SB

I
O

F
Pr

ov
id

es
To

po
lo

gy
,A

dd
re

ss
an

d
Co

nt
ro

lF
un

ct
io

n
Vi

rt
ua

liz
at

io
n

Fl
ow

N
(D

ru
ts

ko
y

et
al

.,
20

13
)

In
si

de
Co

nt
ro

lle
r

S
N

BI
O

F
A

llo
w

s
te

na
nt

s
to

ru
n

th
ei

r
ow

n
ap

pl
ic

at
io

ns
ra

th
er

th
an

ha
vi

ng
fu

ll
co

nt
ro

lo
fn

et
w

or
k

N
et

w
or

k
H

yp
er

vi
so

r
(H

ua
ng

an
d

G
ri

ffi
oe

n,
20

13
)

In
si

de
Co

nt
ro

lle
r

S
N

BI
M

ul
ti

Te
ch

no
lo

gy
H

an
dl

es
se

am
le

ss
ly

di
ffe

re
nt

le
ve

lo
fa

bs
tr

ac
tio

ns
an

d
a

va
ri

et
y

of
A

PI
s

in
SD

N
N

VP
(K

op
on

en
et

al
.,

20
14

)
In

si
de

Co
nt

ro
lle

r
C

N
BI

O
VS

A
llo

w
s

cl
ou

d
te

na
nt

s
to

m
an

ag
e

th
ei

r
da

ta
ce

nt
er

re
so

ur
ce

s
A

ut
oV

Fl
ow

(Y
am

an
ak

a
et

al
.,

20
14

)
Be

tw
ee

n
Sw

itc
h

&
Co

nt
ro

lle
r

M
SB

I
O

F
Pr

ov
id

es
Co

m
pl

et
e

“F
lo

w
Sp

ac
e”

Vi
rt

ua
liz

at
io

n
in

W
A

N
lib

N
et

Vi
rt

(T
ur

ul
le

ta
l.,

20
12

)
In

si
de

Co
nt

ro
lle

r
S

N
BI

M
ul

ti
Te

ch
no

lo
gy

Pr
ov

id
es

a
fle

xi
bl

e
w

ay
to

cr
ea

te
an

d
m

an
ag

e
vi

rt
ua

ln
et

w
or

ks

Le
ge

nd
:M

=
M

ul
tip

le
,S

=
Si

ng
le

,C
=

Cl
us

te
r,

O
F=

O
pe

nF
lo

w
,O

V
S=

O
pe

nV
Sw

itc
h.

Such distributed controllers can be implemented as 1) Distributed (Flat)
Architecture 2) Hierarchical Architecture. In a distributed architecture,
all the controllers have equal rights and share information (e.g. topol-
ogy, reachability, devices capabilities, etc.) with each other, as shown
in Fig. 12(a). On the other hand, hierarchical architecture has two lay-
ers of controllers. The lower layer consists of domain controllers, some-
times referred to as the local controller, and the upper layer contains
a root controller. Local controllers are responsible for their domain
and update the root controller by using a control channel, as shown
in Fig. 12(b). The root controller normally has more rights as compared
to domain controllers and keeps network-wide information.

Table 10 presents a summary of these architectures along with the
list of protocols used, their network types and languages used by dif-
ferent proposals. Some of the proposed architectures use distributed
approaches, while others prefer hierarchical. Proposals such as Flow-
Broker and Orion use a mixture of these two approaches.

6.1.1. Distributed architecture interfaces
This architecture can be classified into two types. One is logically

centralized but physically distributed and the other is completely dis-
tributed. In logically centralized but physically distributed SDN archi-
tecture, each controller is responsible for its domain but synchronized
with other controllers. As soon as there is any change under any con-
troller, it will update neighboring controllers. This enforces a consistent
global view of the network. A key problem with this approach is that
controllers consume network resources to provide information to each
other and frequent change in the network may reduce network perfor-
mance. On the other hand, in a completely distributed controller archi-
tecture, controllers are not synchronized. They may update each other
using protocols, but consistency does become an issue in this approach,
which may lead to unexpected behavior of the network.

SDNi (Yin et al., 2012) attempts to provide inter-controller com-
munication in OpenDaylight which uses Akka and raft based synchro-
nization protocol. It is a message exchange protocol among different
domains coming under a single operator or collaborating operators. It
exchanges customized messages like reachability, flow setup, and capa-
bility updates.

HyperFlow (Tootoonchian and Ganjali, 2010), an event-based solu-
tion, uses WheelFS (Stribling et al., 2009) as a file system for con-
troller communication in a domain. It is a logically centralized and
physically distributed architecture where switches connect to the near-
est controller which updates neighboring controllers by using the pub-
lish/subscribe method. It provides a consistent global view of the net-
work. HyperFlow runs as an application on top of NOX (Gude et al.,
2008) controller and uses most of the features of NOX.

Onix (Koponen et al., 2010) is another approach to overcome scal-
ability problems in SDN controllers, and provides flexibility for the
development of applications in a distributed manner, by providing Dis-
tributed Hash Table (DHT) storage and group membership. It has three
major components; (1) Network Information Base (NIB), (2) Partition
and Cluster Aggregation for hierarchical structure, and (3) Consistency
and Durability for applications. NIB is a data structure that maintains
network entities. To access any particular entity, it queries the index of
all entities by using the entity identifier. Moreover, NIB can cause scal-
ability issues (e.g. exhaust system memory and saturate CPU or Onix
instances) as it is not distributed. To resolve this issue, it uses parti-
tion and cluster aggregation. Control applications in Onix are used to
partition the workload. Whereas in aggregation, cluster managed by
different Onix nodes is considered as a single node. Moreover, authors
claim that consistency and durability can be achieved by using different
algorithms, however, details for these algorithms are missing.

Tam et al. (2011) used two approaches to resolve the problem of
scalability and multipath among different controllers without using a
global view in the data center environment. It uses multiple indepen-
dent controllers to answer the request of underlying devices, instead
of a single omniscient controller. The first approach is Path-Partition

19

Z.Latifetal.
JournalofN

etw
ork

and
Com

puter
A

pplications
156

(2020)
102563

Table 10
Summary for inter controller communication interfaces (EBIs).

Literature Architecture Protocol for Communication Network Type Prog. Language Used Description

OpenDaylight (OpenDaylight,
2020; Yin et al., 2012)

Distributed SDNi Using Akka and Raft WAN JAVA SDN interface (SDNi) enables the controller to exchange
information within the purview of define policies

Kandoo (Hassas Yeganeh et al.,
2012)

Hierarchical Messaging Channel Data Center, Campus C/C++/Python Divides control plane in domain controller and root controller

DISCO (Phemius et al., 2014) Distributed AMQP Data Center, Enterprise, WAN JAVA Based on Messenger and Agent Approach which are
responsible for control information

Onix (Koponen et al., 2010) Distributed Zookeeper Data Center, Enterprise C++ Provides an API for the easiness in application development
HyperFlow (Tootoonchian and

Ganjali, 2010)
Distributed WheelFS Data Center C++ An event-based solution running on top of NOX and provide a

consistent global view of the network
Tam et al. (Tam et al., 2011). Distributed Not Mentioned Data Center Controller

Dependent
Allow controllers to distribute their loads to reduce response

time in Data Center Environment
Elasticon (Dixit et al., 2014) Distributed Custom Protocol Data Center, Cloud JAVA Ensures controller utilization by computing controller load and

stretch or shrinks accordingly
ONOS (Berde et al., 2014) Distributed Raft Enterprise, WAN JAVA Provides scalability and fault tolerance in control lane by using

instance based approach
Helebrandt et al. (Helebrandt and

Kotuliak, 2014)
Distributed Custom Protocol WAN Not Mentioned Enables Controller Communication using INT module

responsible for connection establishment and keep alive
messages

Yazici et al. (Yazici et al., 2014) Distributed JGroup Data Center JAVA A Master controller is selected among different controllers by
using Jgroup and a controller can be added or removed
without network interruption

WE Bridge (Lin et al., 2014b) Distributed Custom BGP Enterprise, WAN JAVA Provides Scalability and control messages are forwarded in
JSON format

DMC (Chundrigar et al., 2016) Distributed RabbitMQ Data Center, Enterprise, WAN Python Ensures flexibility in link and controller failure among
heterogeneous domains

Bari et al. (Bari et al., 2013) Distributed Not Mentioned WAN Python Solving Dynamic Controller Provisioning Problem and reduce
flow setup time.

Orion (Fu et al., 2014) Distributed &
Hierarchical

Not Mentioned WAN JAVA Solves path stretch problem and super linear complexity by
combining distributed and hierarchal architecture

Bhole et al. (Bhole and Puri,
2015)

Hierarchical Not Mentioned WAN JAVA Improve communication reliability and reduce response time

FlowBroker (Marconett et al.,
2015)

Distributed &
Hierarchical

Broker Protocol WAN JAVA Improves load balancing and network performance in multiple
domains

Karakus et al. (Karakus and
Durresi, 2015a)

Hierarchical Broker Protocol WAN Controller
Dependent

Providing Quality of Service using FlowBroker Approach

Guo et al. (Guo et al., 2015) Hierarchical NBI WAN JAVA An hierarchical architecture using Northbound API for
communication among different controllers

Wang et al. (Wang et al., 2016b) Hierarchical Restful API Enterprise, WAN Not Mentioned Co-ordinate controller is used to provide communication
among heterogeneous controllers

D-SDN (Santos et al., 2014) Hierarchical Custom Protocol Home, WAN Not Mentioned Using Master and Secondary approach where master controller
is delegating control to secondary

20

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Fig. 12. Classification of distributed SDN architectures.

Approach; where all possible paths are calculated from source to desti-
nation using Dijkstra’s algorithm and then each multipath is allocated
to one of the controllers according to cost function and number of links
monitored by that controller. Whereas, Partition-Path approach uses
initially preferred links for path computation from source to destina-
tion. All the controllers have different routes of source and destination
pairs. A source can send a request to all the controllers for the route.
This solution will generate extra control traffic. Another solution is to
have a mapping at source node where a table at source node describes
which controller has a route for a particular destination.

Switch to controller mapping is static and a controller may become
overloaded if a large number of flows arrive. It is quite possible that
other controllers might be underutilized because of static mapping,
which may lead to poor performance. Elasticon (Dixit et al., 2014) pro-
poses an architecture, where a load of a controller is computed and
the controller pool can be dynamically expanded and shrunk, which
enhances the network performance and throughput. A switch can be
connected to multiple controllers, with one master and rest as slaves,
for fault tolerance purposes. A distributed data store is used to provide
communication among different controllers and enables a logically cen-
tralized controller. It also has switch-specific information and each con-
troller maintains a TCP connection with other controllers in the form of
mesh. This TCP connection is used to send messages to coordinate with
other controllers during switch migration. This connection is also used
to send messages to a switch which is connected with other controllers
as the master.

ONOS (Berde et al., 2014) also provides an approach for improv-
ing scalability and fault tolerance to the SDN control plane. It, first of
all, creates a global network view by using Titan (Distributed graph
database, 2020) graph database with Cassandra (Lakshman and Malik,
2010) key-value store for distribution. There are multiple instances but
only one instance is the master for each switch, which is responsible for
taking information from the switch and program it. One of the issues in
the first ONOS prototype was the implementation of notifications and
messaging across the ONOS instances. For changes in network states,
ONOS modules had to check the database periodically which increases
the CPU load as well as delay for reacting to events and communica-
tion among instances. This issue was resolved in the second prototype
by creating an inter-instance communication module using a publish-
subscribe mechanism based on Hazelcast (Hazelcast project, 2020).

To facilitate the deployment of SDN on large scale and to do traf-
fic management by the coordination, Helebrandt et al. (Helebrandt
and Kotuliak, 2014) proposed architecture for communication among
multiple domains using an interface, which is referred as INT module.
The protocol is divided into three sub-parts: 1) Controller Interconnec-

tion Session Control, 2) Capabilities Information Exchange, and 3) Path
Setup. Controller interconnection session control is responsible for con-
nection establishment. To reduce the administrative overhead, this ses-
sion can be automated, but for security purposes, it has a manual setup.
Capabilities Information Exchange is used to exchange the capabilities
of network elements, whereas path setup is used for end to end flow
setup. Another responsibility of this protocol is to send keepalive mes-
sages and provide updates to peer controllers. Furthermore, four types
of messages are used for this purpose which are request, reply, help,
and update. A sample packet header is also discussed for communica-
tion among multiple domains.

In (Yazici et al., 2014), Yazici et al. proposed a framework that pro-
vides support for dynamic addition and removal of controllers to the
cluster without any interruption, and at the same time, the framework
can work with numerous existing SDN controllers. It is a leader based
approach where JGroup (Ban, 1998) notification and messaging infras-
tructure is used for the communication among different controllers to
select the master controller. The master controller is responsible for
delineation between different controllers and switches. If for any rea-
son the master controller is not accessible, a new master is selected.
This architecture is not hierarchical as it allocates only a few additional
responsibilities to the master controller.

In DISCO (Phemius et al., 2014) authors used FloodLight OpenFlow
Controllers in multiple domains. The solution provides Intra-Domain
and Inter-Domain Communication and is resilient from disruptions.
DISCO’s architecture is mainly divided into two parts: Messenger and
Agent. Messenger is responsible for lightweight control communication
among different controllers by using Advanced Query Message Proto-
col (AMQP) (AMQP, 2020) using a publish-subscribe method, whereas,
Agent supports network-wide functionalities like Connectivity, Mon-
itoring, Reachability, and Reservation. Furthermore, agents identify
alternative routes to offload traffic from weak interconnections. If they
can not find any alternate routes, they reduce the frequency of control
messages for these weak interconnections.

Implementation of WE Bridge (Lin et al., 2014b) uses heterogeneous
controllers and provides a bridge for communication among these con-
trollers. It first registers controllers and then provides virtualization
among domains because it is possible that Internet domains may belong
to different administrative authorities. Domains are using an interface
to transfer messages in the JSON format whereas other options are also
recommended like; XML and Yanc. Two different applications Inter-
Domain Path Computation and Source-Address based Multipath Rout-
ing run on top of controllers.

Distributed Multi-Domain Controller (DMC) (Chundrigar et al.,
2016) connects heterogeneous networks. This provides the privacy of

21

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

domains and at the same time deals with link and controller failure
among different domains. Light-weight controller-to-controller commu-
nication is done by using RabbitMQ (RabbitMQ, 2020) which is an
implementation of AMQP. The controller in each domain is event-
driven and provides services in its domain and communicates with
neighboring domains by using a control channel that is integrated with
the REST interface. A centralized database is managed where all the
controllers update data. The Publish-Subscribe method is used among
controllers.

6.1.2. Hierarchical architecture interfaces
In hierarchically distributed architecture there are two layers of SDN

controllers. Lower layer controllers are responsible for their respective
domains. At the upper layer, the root controller is responsible for man-
aging a group of domain controllers. Control information in this archi-
tecture is less as compared to flat architecture but Single Node Failure
problem still exists, however it is not as problematic as earlier.

To make SDN scalable, several frequent events (e.g. network-wide
statistics collection and flow arrivals) in the control plane must be
reduced. It can be done by processing these events in a data plane
which is a costly solution, as it requires switch modifications. A solution
to this problem is addressed by Kandoo (Hassas Yeganeh et al., 2012)
which is a hierarchical control plane architecture with two layers of
controllers. The lower layer of controller deals with their domains and
does not have a network-wide view. Moreover, controllers in this layer
are subjected to deal with frequent events. Whereas, the top layer which
consists of a root controller and has the global network state and pro-
cesses rare events (e.g. elephant flows). It uses an API in terms of two
applications as Appdetect and Appreroute. Appdetect runs on local controllers
and constantly queries each switch to detect elephant flows. Appreroute
runs on root controller and install flow entries on switches if elephant
flow is detected by Appdetect. To differentiate the applications running
on a local or root controller, a flag is used.

Karakus et al. (Karakus and Durresi, 2015b) also proposed architec-
ture with two levels which can be extended. The bottom level is referred
to as network level and contains different SDN domains handled by
local controllers. Broker level is an upper level where a super controller
is placed which supervises domain controllers. Local controllers adver-
tise all their reachable addresses as well as border switches connecting
their neighboring domains by using the eastbound interface, which is
file-based, to the super controller. It allows the super controller or bro-
ker to determine the source and destination domains. Whenever there
is inter-domain communication, the broker asks source and destination
domains to advertise all QoS paths from source to gateways (in case
of source domain) and destination to gateways (in case of destination
domain). As the broker has the global view of the network, it determines
all paths from source to destination. After computing the best route, the
broker sends ingress and egress node points to respective domains (i.e.
source, destination, and transit) to reserve the QoS values. Authors also
claim that a controller in a hierarchical setting handles 50% less traffic
than a controller in a non-hierarchic environment.

Guo et al. (2015) used a hierarchical model for multi-domain con-
troller communication, where local controllers are responsible for their
domains whereas the coordinating controller is responsible for the
global view of the network and provides inter-controller communi-
cation which is prototyped in Java. Communication among coordi-
nate controller and domain controller as well as with the applications
is done by using Northbound API. This NBI can provide information
about local controller to applications and coordinating controller. It also
enables applications and Coordinate controller to configure flow tables
and traffic forwarding. Furthermore, two modules are implemented as
Topology Management and Flow Management. Topology Management
is responsible to get the whole topology and flow management is about
updating and installing flows to domain controllers and data plane

respectively.
To solve the issue of consistency among diversified controllers,

Wang et al. (2016b) proposed a coordinate controller approach which
helps for communication among heterogeneous controllers. The control
plane in this architecture is divided into two parts, coordinate controller
and domain controller. The coordinate controller is responsible for the
collection of information of the whole network and domain controllers
and dynamic controllers may use different technologies. The domain
controller is a traditional SDN controller and running its domain. Proto-
col interpreter is used for eastbound communication among coordinate
controller and domain controller which enables the coordinate con-
troller to implement end-to-end provisioning services across multiple
domains. To resolve the issue of diversity of vendors, it uses a unified
Northbound interface. This unified API is divided into two parts: the
topology API and service API. Topology API is used for the collection
of network information and elements connectivity to design a global
view of the network. The purpose of the service API is to launch service
requests and set up a connection in the network.

Sometimes control can also be delegated to underlying devices. For
example, Decentralized SDN (D-SDN) (Santos et al., 2014) is a hybrid
approach using Main Controller (MC) and Secondary Controller (SC) by
delegating control. It allows physical as well as logical control distri-
bution by using MC and SC. One of the integral features in D-SDN is
security, as MC authorizes before delegating control to SC so that it can
act as a controller. This delegation occurs upon a request from SC that
is triggered by a set of events. These events include a newly installed SC
or a gateway through which mobile devices can access the Internet. SC
cannot write any new flow entries without authentication of MC. Com-
munication between MC and SC is done by using an interface for control
delegation message where SC requests a Check_in_Request and whereas
master authorizes or denies Check_in_Response. Similarly, communica-
tion among SCs is done by using D-SDN’s SC-SC protocol to implement
fault tolerance. Switch to controller mapping in SCs are master-slave
based. A slave SC can receive Hello messages for a predefined time. If
it does not receive, slave SC can become master by sending role_change
message to the switch.

Every controller has different features and northbound interfaces,
for example, deleting a flow in Floodlight controller is easier as com-
pared to POX and both of these controllers have different functions.
Zebra (Yu et al., 2015) attempts to resolve this heterogeneity problem
by dividing the control layer into two parts: the dissemination layer and
the decision layer. Dissemination Layer has traditional SDN controllers,
whereas, two main modules referred to as Heterogeneous Controller
Management (HCM) and Domain Relationships Management (DRM) are
placed in the decision layer. Different SDN controllers (e.g. Floodlight,
POX, OpenDaylight, etc.) are placed in HCM and it handles the rout-
ing decision inside a domain. Whereas, CRM provides decision making
among multiple domains.

6.1.3. Hybrid architecture interfaces
Orion (Fu et al., 2014) is an example of large scale networks

with a mixture of distributed (flat) and hierarchical architectures. It
mainly focuses on the Path Stretch problem and Super Linear Com-
putation Complexity problems introduced by these two architectures.
Path stretch is the difference between the best optimal path and actual
path traffic takes in the network. This problem occurs in hierarchi-
cal architecture. A superlinear computational complexity issue exists in
distributed (flat) architecture and normally occurs because of the size
of the network. Orion addresses these issues by dividing architecture
into three layers which include, physical layer, area controller layer,
and domain controller layer. Area controllers are close to OpenFlow
switches and pass on the information to domain controllers which con-
sider area controllers as nodes and reduce the path stretch and super
linear computational complexity problem. A TCP connection is used as
an interface for communication purposes between the area controller
and the domain controller. This channel is used for sending requests

22

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

and distribute rules.
In (Marconett et al., 2015), Marconett et al. proposed a mechanism

called FlowBroker using a hierarchical approach to do load balancing
and improve network performance. Brokers work as root controller on
the top layer, whereas, in the lower layer, domain controllers are man-
aging their domains. Each domain controller is attached to a broker
according to their reputation in terms of load balancing and perfor-
mance. This performance reputation by using machine learning based
agents that are connected with domain controllers. A broker is a soft-
ware process that allows the exchange of network-wide state along with
the flow table updates to respective domain controllers. To counter the
failover mechanism, switch controller mapping is done by using pri-
mary and secondary controllers. Secondary controllers monitor the pri-
mary controller by using an interface based on Ctrl_Keep_Alive messages
every 2 s. Whereas, the primary controller sends Ctrl_Table_Backup mes-
sages periodically to mirror any changes that occur in the primary con-
troller.

6.1.4. Security in inter-controller communication
In SDN, clustering provides many advantages which include scale-

out performance, high availability, and data durability. However, it also
brings a few new challenges. Similar to SBI, inter-controller communi-
cation in SDN is not secure by default which allows hackers to observe
and modify traffic (Secci et al., 2017). ONOS (Berde et al., 2014) cre-
ated a performance and security brigade in early 2017 to stress various
components of ONOS in terms of security and performance. To make
this communication secure, this brigade proposed that TLS can be used
which ensures secure communication in cluster (Secci et al., 2018).

6.1.5. Insights on SDN domain interaction
Distributed controller approaches solve several issues in SDN, but

it also introduces some new challenges, for example, consistency and
resource utilization. Similar to the northbound interface, east interfaces
are also not standardized which is one of the major challenges in dis-
tributed controllers. Moreover, a consistent global view is also required
in distributed controllers which may reduce network performance. Con-
trolling the overhead is another major challenge. From a wireless net-
work perspective, lightweight controllers for access points could lead to
better flow management in mobile networks. Hence, EBIs for inter-AP
Controller communication will certainly benefit the softwarization of
wireless networks.

6.2. Interaction between SDN and traditional networks (westbound APIs)

Some critics believe that Inter-Domain communication in the legacy
network is better rather than using SDN. For example, in (Wibowo and
Gregory, 2016) authors use BGP on top of TCP for inter-controller com-
munication. Session starts by using open message which leads to estab-
lished once the connection is established among these controllers. Con-
trollers can share information by using update messages which include
reachability and messages like bandwidth information. Authors claim
that legacy networks are performing well as compared to SDN with
BGP and SDN without BGP.

SDN is a promising way to re-architect the Internet and transitioning
from traditional network to SDN is an important issue as there are a
large number of Autonomous Systems throughout the globe (Yangyang
and Jun 2020; Gupta et al., 2014). During this transition SDN must co-
exist with legacy network and any SDN network should be able to share
reachability information, forward traffic, and express routing policies
with a traditional network through gateways in the SDN domain. Fig. 13
presents traditional ASes communication with the SDN domain through
border gateway switches. Migration Work Group (Migration working
group, 2020) under ONF (ONF, 2020) previously worked on proposals
for the transition from traditional to SDN networks, however, it is not
functional anymore.

Fig. 13. SDN and autonomous systems.

RouteFlow (Nascimento et al., 2011) is one of the first approaches
of IP routing on OpenFlow switches which is composed of RouteFlow
Server, RouteFlow Slave, and RouteFlow Controller. RouteFlow Con-
troller runs as an application on top of the SDN Controller. RouteFlow
Server keeps network-wide state and core logic resides in it and man-
ages a virtual network environment to interconnect virtualized IP rout-
ing engines e.g. Quagga (Quagga routing suite, 2020). For legacy net-
work, RouteFlow Slave is used which updates the server using a custom
interface (i.e. RouteFlow Protocol). The messages of this protocol are
either command type or event type. These messages are the subset of
OpenFlow protocol along with some other messages (e.g. send updates,
accept or reject VM, RF-Slave configuration, etc.).

Another solution using BGP is SDN-IP (Lin et al., 2013) where the
seamless interconnection between the SDN domain and the traditional
domain is focused. SDN-IP Peering application (having BGP Route Mod-
ule and Proactive Flow Installer Module) runs on top of the network
operating system. BGP route module synchronizes BGP route updates
pushed by the BGP process which is ZebOS BGPd (ZebOS, 2020) and
stores them in Route Information Base (RIB) which can scale to 10,000
entries, whereas Proactive Flow Installer uses routes learned through
BGP and installs flow entries accordingly. In simple words, the con-
troller of the SDN domain uses BGP to exchange routing information
with neighboring legacy network domains but uses SDN’s centralized
mode to control local AS’s BGP route calculation and installation.

BTSDN (Lin et al., 2014a) proposes a practical solution by integrat-
ing SDN network to the current Internet with BGP (Rekhter and Hares,
2020; Claffy, 2012). Using BTSDN, SDN and traditional networks can
co-exist by using Internal BGP (iBGP) and external BGP (eBGP) so that
SDN can be incrementally deployed to the Internet and finally replace
traditional networks. Usage of eBGP and iBGP in BTSDN is the same as
a traditional network. OpenFlow switches directly connected to border
routers and play a key role and act as a proxy because the SDN con-
troller cannot directly control border routers. However, the controller
can install certain flow entries on these SDN switches. The data plane
adopts the mechanism of Address Resolution Protocol (ARP) and Media
Access Control (MAC) to ensure the delivery of IP packets between SDN
and traditional domains.

Internet eXchange Points (IXPs) are playing an integral role in inter-
connecting many networks and bringing popular content closer to end-
users. Routing in a traditional network using BGP only utilizes desti-
nation IP prefix, hence it cannot make fine-grained decisions based on
the type of application or sender. Similarly, routes are learned from
direct neighbors so the network cannot provide proper end to end ser-

23

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

vice. At the same time network can not express inbound and outbound
paths. To resolve all these issues a combination of IXPs and SDN makes
Software Defined eXchange (SDX) (Gupta et al., 2014). It enables their
participants to run novel applications, written in Pyretic (Monsanto et
al., 2013), that control the flow of traffic entering and leaving their
border routers. It gives an illusion to each AS, that a virtual SDN switch
is connected to its border router and enables flexible specifications of
forwarding policies. It also provides isolation among different partici-
pants.

Insights: Newer versions of OpenFlow provides hybrid solutions,
where controllers can communicate with SDN elements as well as tra-
ditional switches. However, research for the westbound interface is
required during the transition period from traditional networks to SDN.
Co-existence interoperability will be a key step for large scale SDNs.
Moreover, it will be important to address new technologies and archi-
tectures such as data-centric networks. Some recent research efforts
have focused on SDN in data-centric communication, however west-
bound APIs between pure-SDN & data-centric-SDN domains will cer-
tainly be challenging.

7. Future research directions

Software Defined Networks have been a major research area in
recent years, however, more effort has been placed on controller design.
Interfaces, on the other hand, has received less attention, except Open-
Flow. Here we present several research directions and possible chal-
lenges for each type of interface.

7.1. Southbound interface

OpenFlow has dominated the SBI, as it has matured rapidly,
although other solutions (as discussed in this article) also offer inter-
esting features. OpenFlow has undergone rapid evolution, which has its
pros and cons. A long header for matching is used in different OpenFlow
versions, which leads to the requirement of more storage for rules and
takes more processing time. Although several other studies exist which
address this size issue, not all have been integrated into OpenFlow.
This can certainly be a development direction. An optimal mechanism
to reduce the storage of processing requirements will be beneficial to
the overall system in different domains.

ForCES offers a rich set of features, such as separation of control and
data plane without changing the architecture of traditional networks,
and extensibility. These features are still not available in OpenFlow or
other southbound interfaces. A possible approach could be to further
develop ForCES to become a more elaborate solution, or to manage
these features in OpenFlow. Combining all possible features in a single
solution may make it too complex and increase its overhead, hence fur-
ther research is needed to adequately evaluate the performance of both,
and then develop on their capabilities for specific types of networks.

Two different modes are used to reduce the latency in the flow
rule setup: proactive and reactive. In proactive mode, flows are already
installed before the arrival of packets. However, this solution creates
unnecessary overhead but can be useful for critical flows which are
delay sensitive. In reactive mode time taken for flow, installation is cru-
cial because flow installation is done after packet arrival. This mode is
not suitable for time-sensitive flows. Research challenges in this regard
are multifold, and depending on the type of network the solutions could
be different. An SBI that takes into account the design and usage of net-
works, types of communicating devices and their mobility traffic pat-
terns may yield better flow installation time. The literature is also miss-
ing any performance analysis in terms of SBIs effect on flow installation
by different solutions. This is another area of exploration.

For a wide deployment of SDN in WSNs, some issues have already
been addressed. However, robustness in the case of sink failure is a
challenge and an open question. As more sensor node deployment is
being done in different networks, hence it is important to evaluate the

softwarization and thus a unified lightweight SBI. The memory size of
sensor nodes is limited to keep a large number of flow rules. Similarly,
the security and mobility management of different nodes requires fur-
ther research attention. Similarly, research in the area of energy man-
agement is a necessity to ensure efficient use of resources for commu-
nication among different SDN planes and elements.

A large number of devices are expected to be connected through the
Internet because of the power of the Internet of Things. SDN can help
IoT in different aspects. However, to manage the enormous collection
of heterogeneous devices via centralized control, an adequate solution
in terms of the southbound interface is still missing. The fundamental
limitation is in the OpenFlow design context. Current solutions are only
designed to communicate with switches. However, in a multi-hoping
ad-hoc nature of IoT, these solutions have to effectively extend beyond
vSwitch. This again requires a newer and efficient design for SBI which
can communicate with heterogeneous devices with multi-technology
interfaces. A unified multi-technology flow installation, topology man-
agement, and configuration SBI will be required in the future for large
scale IoT systems.

7.2. Northbound interface

SDN provides incredible opportunities for network operators in
terms of network management using a centralized controller. However,
due to the absence of a standardized API, this has become a challenging
task. Moreover, it becomes more challenging and time-consuming due
to distributed controller environments. Hence, to make SDN a powerful
option for network operators, an instinctive API is desired. Due to the
diverse landscape of network elements and multiple versions of proto-
cols (e.g. OpenFlow) portable application development is very difficult.
Thus, a flexible interface is required which is capable of removing this
underlying complexity.

Several new features have been introduced in all OpenFlow ver-
sions, and programming languages can take advantage of these features.
However, FatTire (Reitblatt et al., 2013) is the only language for NBI
which incorporated group tables introduced in OpenFlow version 1.1.
Similarly, there are many other features of OpenFlow which can help in
various programming languages, but very limited advantages have been
taken by high-level languages. Efforts in this regard can lead to a poten-
tial increase in application development for SDN in different domains.
Many of the application programming languages offer libraries and
community contributed extensions which make them famous in devel-
oper communities. However, SDN programming languages do not pro-
vide such an interface or repository. Instead, these languages provide
fundamental constructs that force developers to write applications from
scratch.

Vendor-specific and ad-hoc solutions are major issues of traditional
networking which exist in SDN as well as controller-based northbound
interfaces. Intent-based interfaces can be a solution to this issue, how-
ever, further exploration of how to utilize them effectively is required.

7.3. Virtualization

In SDN, data plane performance is directly dependent on control
plane performance. There is significant research to enhance the per-
formance of the control plane. For example, switches are statically
assigned to controllers which may increase response time. DCAP (Wang
et al., 2017b) addressed this issue by dynamically assigning controllers
to minimize response time. However, different tenants of vSDN may
also need to specify their control plane demands in addition to request-
ing the virtual topologies and links. Similarly, the tenant may specify
the demands for OpenFlow message types. For example, a tenant may
require fast processing of FLOW_MOD messages instead of OpenFlow
stats. In the current research, defining these control planes and Open-
Flow specific demands is not available. This research direction, in the

24

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

long run, will allow fine-grained virtualization and API configuration.
Another important issue is reliability and fault tolerance of hyper-

visors. Different mechanisms and procedures need to be defined to
recover faults and failures of hypervisors. A single hypervisor may not
be sufficient to manage a large number of vSDN elements. To overcome
the scalability issue, the distributed architecture of hypervisors can also
be an interesting research area. Similar to controller placement, hyper-
visor placement plays a significant role in the overall system. Research
in optimizing this placement is yet another challenge.

7.4. East/westbound interface

Just like the northbound interface of SDN, communication between
different controllers is not established by a universally accepted proto-
col. The communication interface between multiple controllers directly
affects performance. Thus, a standardized API and protocol are required
so network performance can be enhanced. Due to this reason, SDN
deployment is difficult in large scale networks. Also, SDN controllers
play a critical role in managing and monitoring network traffic. How-
ever, multi-controller architecture still lacks in safety mechanisms as
well as suspicious traffic detection.

The different types of controllers and their architectures also
introduces heterogeneity challenges. As many of the controllers have
matured over time, providing a unified eastbound interface is a chal-
lenging task. Similarly, ensuring the inter-controller communication
overhead to be as minimal as possible, first requires evaluation and
comparison of existing solutions, and then requires the development of
an efficient communication interface. These challenges are not isolated,
but also affect the performance of other interfaces, such as SBI which
have to install flows provided by root/master controller.

Westbound interface with traditional networks may need software
implementation on routers. Such implementations may translate the
flow entries to routing paths, and vice versa. Similarly, interaction with
the non-IP domain (such as data-centric networks) is another major
research direction, where the translation of IP flows to name-based
flows will be interesting. OF will also need to adapt in this regard.

8. Conclusion

This paper presented a detailed and systematic survey of different
types of interfaces and interface protocols for Software Defined Net-
works. These protocols are necessary for inter-layer and inter-element
communication in the complete SDN architecture. We classify these
interfaces based on their directional-communication properties, and
then further sub-classify them based on the functionality. Southbound
interfaces between the control plane and data plane have been dom-
inated by OpenFlow. It has become a de facto industry standard,
although some other SBI solutions are also available which are not
dependent on OpenFlow. Most of the research work done in SBIs is an
extension or improvement of the OpenFlow protocol. However, it has
limited applications for emerging technologies such as IoT. Northbound
interfaces between application plane and controllers are quite differ-
ent from SBIs as the purpose is to enable users to control, configure,
and program the network. Hence, they are classified in terms of pro-
grammability, portability, controller-based, and intent-based solutions.
Although virtualization is highly integrated into SDN, we present it as
a separate functional element and review the different interfaces which
interact with hypervisors. Inter–SDN domain interfaces and SDN to tra-
ditional network interfaces have also been analyzed in detail for their
different architectures and properties. In addition to the insights and
future directions presented earlier, it is important to note that network
programmability will have a major impact on next-generation Internet
architecture, either it is wired or wireless. Thus, with the emergence
of new technologies, the interface protocols will have to evolve at the
same pace as the controllers and other technologies.

Acknowledgment

This work is in part supported by the National Natural Science Foun-
dation of China No. 61772077, 61370192, and the Beijing Natural Sci-
ence Foundation No. 4192051.

References

Agborubere, B., Sanchez-Velazquez, E., June 2017. Openflow communications and tls
security in software-defined networks. In: 2017 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber. Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 560–566.

Al-Shabibi, A., Leenheer, M.D., Gerola, M., Koshibe, A., Snow, W., Parulkar, G., 2014.
Openvirtex: a network hypervisor. In: Open Networking Summit 2014 (ONS 2014).
Plus 0.5em Minus 0.4emSanta Clara. USENIX Association, CA.

Ali, N.F., Said, A.M., Nisar, K., Aziz, I.A., Nov 2017. A survey on software defined
network approaches for achieving energy efficiency in wireless sensor network. In:
2017 IEEE Conference on Wireless Sensors. ICWiSe, pp. 1–6.

AMQP, 2020. Advance message queuing protocol. Accessed on: 01-Jan-2020. [Online].
Available: https://www.amqp.org.

Anadiotis, A.C.G., Milardo, S., Morabito, G., Palazzo, S., 2018. Towards unified control
of networks of switches and sensors through a network operating system. IEEE
Intern. Things J. 99 11.

Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., Walker,
D., Jan. 2014. Netkat: semantic foundations for networks. SIGPLAN Not 49 (1),
113–126.

Badotra, S., Panda, S.N., 2019. Evaluation and comparison of opendaylight and open
networking operating system in software-defined networking. Clust. Comp..

Ban, B., 01 1998. Design and Implementation of a Reliable Group Communication
Toolkit for Java.

Banks E., Thinking about SDN? Here are 42 vendors that offer SDN products, Accessed
on: 01-Jan-2020. [Online]. Available: https://searchsdn.techtarget.com/news/
2240212374/Thinking-about-SDN-Here-are-42-vendors-that-offer-SDN-products.

Banse, C., Rangarajan, S., Aug 2015. A secure northbound interface for sdn applications.
In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 834–839.

Bari, M.F., Roy, A.R., Chowdhury, S.R., Zhang, Q., Zhani, M.F., Ahmed, R., Boutaba, R.,
Oct 2013. Dynamic controller provisioning in software defined networks. In:
Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013), pp. 18–25.

Belter, B., Binczewski, A., Dombek, K., Juszczyk, A., Ogrodowczyk, L., Parniewicz, D.,
Stroiski, M., Olszewski, I., Sept 2014. Programmable abstraction of datapath. In:
2014 Third European Workshop on Software Defined Networks, pp. 7–12.

Bera, S., Misra, S., Vasilakos, A.V., Dec 2017. Software-defined networking for internet
of things: a survey. IEEE Intern. Things J. 4 (6), 1994–2008.

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B.,
O’Connor, B., Radoslavov, P., Snow, W., Parulkar, G., 2014. Onos: towards an open,
distributed sdn os. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, Ser. HotSDN 14. Plus 0.5em Minus 0.4em. ACM, New York,
NY, USA, pp. 1–6.

Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R.,
Seskar, I., Geni, Mar. 2014. A federated testbed for innovative network experiments.
Comput. Network. 61, 5–23.

Bhole, P.D., Puri, D.D., Dec 2015. Distributed hierarchical control plane of software
defined networking. In: 2015 International Conference on Computational
Intelligence and Communication Networks (CICN), pp. 516–522.

Bianchi, G., Bonola, M., Capone, A., Cascone, C., Apr. 2014. Openstate: programming
platform-independent stateful openflow applications inside the switch, SIGCOMM
Comput. Commun. Rev. 44 (2), 44–51.

Bizanis, N., Kuipers, F.A., 2016. SDN and virtualization solutions for the internet of
things: a survey. IEEE Access 4, 5591–5606.

Blenk, A., Basta, A., Reisslein, M., Kellerer, W., 2016. Survey on network virtualization
hypervisors for software defined networking. IEEE Commun. Surv. Tutor. 18 (1),
655–685 Firstquarter.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C.,
Talayco, D., Vahdat, A., Varghese, G., Walker, D., Jul. 2014. P4: programming
protocol-independent packet processors, SIGCOMM Comput. Commun. Rev. 44 (3),
87–95.

Boulis, A., Han, C.-C., Shea, R., Srivastava, M.B., Sensorware, Aug. 2007. Programming
sensor networks beyond code update and querying. Pervasive Mob. Comput. 3 (4),
386–412.

Bozakov, Z., Papadimitriou, P., Autoslice, 2012. Automated and scalable slicing for
software-defined networks. In: Proceedings of the 2012 ACM Conference on
CoNEXT Student Workshop, Ser. CoNEXT Student 12. Plus 0.5em Minus 0.4em.
ACM, New York, NY, USA, pp. 3–4.

Bradley, J.M., 2013, Nov. The internet of everything: creating better experiences in
unimaginable ways. [Online]. Available: https://blogs.cisco.com/digital/the-
internet-of-everything-creating-better-experiences-in-unimaginable-ways.

Campbell, A.T., De Meer, H.G., Kounavis, M.E., Miki, K., Vicente, J.B., Villela, D., Apr.
1999. A survey of programmable networks, SIGCOMM Comput. Commun. Rev. 29
(2), 7–23.

Casey, C.J., Sutton, A., Sprintson, A., 2014. tinynbi: distilling an API from essential
openflow abstractions. CoRR abs/1403, 6644.

25

http://refhub.elsevier.com/S1084-8045(20)30037-0/sref2
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref3
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref4
https://www.amqp.org
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref6
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref7
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref9
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref10
https://searchsdn.techtarget.com/news/2240212374/Thinking-about-SDN-Here-are-42-vendors-that-offer-SDN-products
https://searchsdn.techtarget.com/news/2240212374/Thinking-about-SDN-Here-are-42-vendors-that-offer-SDN-products
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref12
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref13
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref14
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref15
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref16
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref17
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref18
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref19
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref20
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref21
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref22
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref23
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref24
https://blogs.cisco.com/digital/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways
https://blogs.cisco.com/digital/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref26
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref27

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Chen, X., Wu, T., Jan 2017. Towards the semantic web based northbound interface for
sdn resource management. In: 2017 IEEE 11th International Conference on Semantic
Computing. ICSC, pp. 40–47.

Ching-Hao, C., Lin, Y.-D., 2015. Openflow version roadmap. Accessed on: 01-Jan-2020.
[Online]. Available: http://speed.cis.nctu.edu.tw/ydlin/miscpub/indep_frank.pdf.

Chundrigar, S.B., Shieh, M.-Z., Tung, L.-P., Lin, B.-S.P., 2016. Dmc: Distributed
Approach in Multi-Domain Controllers. in INC, pp. 31–36.

Ciciolu, M., alhan, A., Hubsflow, 2019. A novel interface protocol for sdn-enabled
wbans. Comput. Network. 160, 105–117.

Claffy, K., 2012. Border gateway protocol (bgp) and traceroute data workshop report.
SIGCOMM Comput. Commun. Rev. 42 (3), 28–31.

Conti, M., Kaliyar, P., Lal, C., 2019. Censor: cloud-enabled secure iot architecture over
sdn paradigm. Concurrency Comput. Pract. Ex. vol. 0, no. 0, p. e4978, e4978
cpe.4978.

Costanzo, S., Galluccio, L., Morabito, G., Palazzo, S., Oct 2012. Software defined
wireless networks: unbridling sdns. In: 2012 European Workshop on Software
Defined Networking, pp. 1–6.

Cox, J.H., Chung, J., Donovan, S., Ivey, J., Clark, R.J., Riley, G., Owen, H.L., 2017.
Advancing software-defined networks: a survey. IEEE Access 5, 25487–25526.

Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.,
Devoflow, Aug. 2011. Scaling flow management for high-performance networks,
SIGCOMM Comput. Commun. Rev. 41 (4), 254–265.

Dasu, T., Kanza, Y., Srivastava, D., 2017. Geotagging ip packets for location-aware
software-defined networking in the presence of virtual network functions. In:
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, Ser. SIGSPATIAL 17. Plus 0.5em Minus 0, vol. 9.
ACM, 4emNew York, NY, USA. 19:4.

Desai, A., Nagegowda, K.S., Ninikrishna, T., March 2016. A framework for integrating
iot and sdn using proposed of-enabled management device. In: 2016 International
Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–4.

Dhawan, M., Poddar, R., Mahajan, K., Mann, V., 2015. Sphinx: Detecting Security
Attacks in Software-Defined Networks, 01.

Distributed graph database, Accessed on: 01-Jan-2020. [Online]. Available: http://titan.
thinkaurelius.com/.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T.V., Kompella, R.R., Oct 2014. Elasticon;
an elastic distributed sdn controller. In: 2014 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems. ANCS), pp. 17–27.

DLUX, 2020. OpenDaylight DLUX: DLUX Karaf feature. Accessed on: 01-Jan-2020.
[Online]. Available: https://wiki.opendaylight.org/view/OpenDaylight_DLUX:
DLUX_Karaf_Feature.

Drutskoy, D., Keller, E., Rexford, J., March 2013. Scalable network virtualization in
software-defined networks. IEEE Internet Comput. 17 (2), 20–27.

Dvir, A., Haddad, Y., Zilberman, A., 2019. The controller placement problem for wireless
sdn. Wireless Network 25 (8), 4963–4978.

Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A., 2011. Network configuration
protocol (netconf). Accessed on: 01-Jan-2020. [Online]. Available: https://www.rfc-
editor.org/rfc/pdfrfc/rfc6241.txt.pdf.

Fei, X., Liu, F., Xu, H., Jin, H., June 2017. Towards load-balanced vnf assignment in
geo-distributed nfv infrastructure. In: 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS), pp. 1–10.

Fei, X., Liu, F., Xu, H., Jin, H., 2018. Adaptive vnf scaling and flow routing with
proactive demand prediction. In: IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, 4, pp. 486–494.

Ferguson, A.D., Guha, A., Liang, C., Fonseca, R., Krishnamurthi, S., Aug. 2013.
Participatory networking: an api for application control of sdns. SIGCOMM Comput.
Commun. Rev. 43 (4), 327–338.

Fonseca, P.C.d.R., Mota, E.S., 2017. A survey on fault management in software-defined
networks. IEEE Commun. Surv. Tutor. 19 (4), 2284–2321 Fourthquarter.

Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A., Walker, D.,
Sep. 2011. Frenetic: a network programming language. SIGPLAN Not. 46 (9),
279–291.

Fu, Y., Bi, J., Gao, K., Chen, Z., Wu, J., Hao, B., Oct 2014. Orion: a hybrid hierarchical
control plane of software-defined networking for large-scale networks. In: 2014 IEEE
22nd International Conference on Network Protocols, pp. 569–576.

Galluccio, L., Milardo, S., Morabito, G., Palazzo, S., April 2015. Sdn-wise: design,
prototyping and experimentation of a stateful sdn solution for wireless sensor
networks,. In: 2015 IEEE Conference on Computer Communications (INFOCOM),
pp. 513–521.

gRPC, 2020. General purpose remote procedure call. Accessed on: 01-Jan-2020.
[Online]. Available: https://grpc.io/docs/guides/.

Gong, Y., Huang, W., Wang, W., Lei, Y., Dec 2015. A survey on software defined
networking and its applications. Front. Comput. Sci. 9 (6), 827–845.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S., Jul.
2008. Nox: towards an operating system for networks, SIGCOMM Comput. Commun.
Rev. 38 (3), 105–110.

Guo, Z., Hu, Y., Shou, G., Guo, Z., Sept 2015. An implementation of multi-domain
software defined networking. In: 11th International Conference on Wireless
Communications, Networking and Mobile Computing. WiCOM 2015, pp. 1–5.

Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S.P., Schlinker, B., Feamster, N.,
Rexford, J., Shenker, S., Clark, R., Katz-Bassett, E., 2014. Sdx: a software defined
internet exchange. In: Proceedings of the 2014 ACM Conference on SIGCOMM, Ser.
SIGCOMM 14. Plus 0.5em Minus 0.4em. ACM, New York, NY, USA, pp. 551–562.

Haleplidis, E., Salim, J.H., Halpern, J.M., Hares, S., Pentikousis, K., Ogawa, K., Wang,
W., Denazis, S., Koufopavlou, O., 2015. Network programmability with forces. IEEE
Commun. Surv. Tutor. 17 (3), 1423–1440.

Hardt, D., 2012. The OAuth 2.0 authorization framework. Accessed on: 01-Jan-2020.
[Online]. Available: https://tools.ietf.org/html/rfc6749.

S.Hares, Analysis of comparisons between OpenFlow and ForCES, Accessed on:
01-Jan-2020. [Online]. Available: https://tools.ietf.org/pdf/draft-hares-forces-vs-
openflow-00.pdf.

Hassas Yeganeh, S., Ganjali, Y., Kandoo, 2012. A framework for efficient and scalable
offloading of control applications. In: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, Ser. HotSDN 12. Plus 0.5em Minus 0.4em.
ACM, New York, NY, USA, pp. 19–24.

Hazelcast project, Accessed on: 01-Jan-2020. [Online]. Available: https://hazelcast.org/.
Helebrandt, P., Kotuliak, I., Dec 2014. Novel sdn multi-domain architecture. In:

Emerging eLearning Technologies and Applications (ICETA), 2014 IEEE 12th
International Conference on, pp. 139–143.

Hernan, S., Lambert, S., Ostwald, T., Shostack, A., 2006. Uncover security design flaws
using the stride approach. Accessed on: 01-Jan-2020. [Online]. Available: https://
adam.shostack.org/uncover.html.

Hinrichs, T.L., Gude, N.S., Casado, M., Mitchell, J.C., Shenker, S., 2009. Practical
declarative network management. In: Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking, Ser. WREN 09. Plus 0.5em Minus 0.4em. ACM,
New York, NY, USA, pp. 1–10.

Hu, T., Guo, Z., Baker, T., Lan, J., 2018. Multi-controller Based Software-Defined
Networking: A Survey, vol. 99. IEEE Access. 11.

Huang, S., Griffioen, J., July 2013. Network hypervisors: managing the emerging sdn
chaos. In: 2013 22nd International Conference on Computer Communication and
Networks (ICCCN), pp. 1–7.

Intent framework, Accessed on: 01-Jan-2020. [Online]. Available: https://wiki.
onosproject.org/display/ONOS/IntentFramework.

Internet engineering task force, Accessed on: 01-Jan-2020. [Online]. Available:
https://www.ietf.org/.

Karakus, M., Durresi, A., March 2015. A scalable inter-as qos routing architecture in
software defined network (sdn). In: 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, pp. 148–154.

Karakus, M., Durresi, A., March 2015. A scalable inter-as qos routing architecture in
software defined network (sdn). In: 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, pp. 148–154.

Karakus, M., Durresi, A., 2017. A survey: control plane scalability issues and approaches
in software-defined networking (sdn). Comput. Network. 112, 279–293 Supplement
C.

Karaf, 2020. Apache Karaf Applications Runtime. Accessed on: 01-Jan-2020. [Online].
Available: https://karaf.apache.org/.

N. P. Katta, J. Rexford, and D. Walker, Logic programming for software-defined
networks, Accessed on: 01-Jan-2020. [Online]. Available: http://frenetic-lang.org/
publications/logic-programming-xldi12.pdf.

Kemp, S., 2018. Digital in 2018: world’s internet users pass the 4 billion mark. Accessed
on: 01-Jan-2020. [Online]. Available: https://wearesocial.com/blog/2018/01/
global-digital-report-2018.

Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., Polakos, P., 2016. Wireless
sensor network virtualization: a survey. IEEE Commun. Surv. Tutor. 18 (1),
553–576.

Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., Clark, R., 2015. Kinetic:
verifiable dynamic network control. In: Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation, Ser. NSDI15. Plus 0.5em Minus
0.4em. USENIX Association, Berkeley, CA, USA, pp. 59–72.

Klti, R., Kotronis, V., Smith, P., Oct 2013. Openflow: a security analysis. In: 2013 21st
IEEE International Conference on Network Protocols (ICNP), pp. 1–6.

Kobo, H.I., Abu-Mahfouz, A.M., Hancke, G.P., 2017. A survey on software-defined
wireless sensor networks: challenges and design requirements. IEEE Access 5,
1872–1899.

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R.,
Iwata, Y., Inoue, H., Hama, T., Shenker, S., Onix, 2010. A distributed control
platform for large-scale production networks. In: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, Ser. OSDI10. Plus
0.5em Minus 0.4em. USENIX Association, Berkeley, CA, USA, pp. 351–364.

Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A., Fulton, B., Ganichev, I.,
Gross, J., Ingram, P., Jackson, E., Lambeth, A., Lenglet, R., Li, S.-H., Padmanabhan,
A., Pettit, J., Pfaff, B., Ramanathan, R., Shenker, S., Shieh, A., Stribling, J., Thakkar,
P., Wendlandt, D., Yip, A., Zhang, R., 2014. Network virtualization in multi-tenant
datacenters. In: 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). USENIX Association, Seattle, WA, pp. 203–216. plus
0.5em minus 0.4em.

Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.,
Jan 2015. Software-defined networking: a comprehensive survey. Proc. IEEE 103
(1), 14–76.

Lakshman, A., Malik, P., Apr. 2010. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev. 44 (2), 35–40.

Layeghy, S., Pakzad, F., Portmann, M., Dec 2016. Scor: constraint programming-based
northbound interface for sdn. In: 2016 26th International Telecommunication
Networks and Applications Conference (ITNAC), pp. 83–88.

Lazaris, A., Tahara, D., Huang, X., Li, E., Voellmy, A., Yang, Y.R., Yu, M., Tango, ACM,
2014. Simplifying sdn control with automatic switch property inference, abstraction,
and optimization. In: Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, Ser. CoNEXT 14. Plus 0.5em
Minus 0.4em, pp. 199–212 New York, NY, USA.

Li, Y., Chen, M., 2015. Software-defined network function virtualization: a survey. IEEE
Access 3, 2542–2553.

26

http://refhub.elsevier.com/S1084-8045(20)30037-0/sref28
http://speed.cis.nctu.edu.tw/ydlin/miscpub/indep_frank.pdf
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref30
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref31
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref32
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref33
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref34
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref35
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref36
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref37
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref38
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref39
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref41
https://wiki.opendaylight.org/view/OpenDaylight_DLUX:%20DLUX_Karaf_Feature
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref42
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref43
https://www.rfc-editor.org/rfc/pdfrfc/rfc6241.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc6241.txt.pdf
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref45
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref46
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref47
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref48
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref49
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref50
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref51
https://grpc.io/docs/guides/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref52
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref53
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref54
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref55
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref56
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/pdf/draft-hares-forces-vs-openflow-00.pdf
https://tools.ietf.org/pdf/draft-hares-forces-vs-openflow-00.pdf
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref59
https://hazelcast.org/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref61
https://adam.shostack.org/uncover.html
https://adam.shostack.org/uncover.html
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref62
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref63
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref64
https://wiki.onosproject.org/display/ONOS/IntentFramework
https://wiki.onosproject.org/display/ONOS/IntentFramework
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref67
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref68
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref69
https://karaf.apache.org/
http://frenetic-lang.org/publications/logic-programming-xldi12.pdf
http://frenetic-lang.org/publications/logic-programming-xldi12.pdf
https://wearesocial.com/blog/2018/01/global-digital-report-2018
https://wearesocial.com/blog/2018/01/global-digital-report-2018
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref72
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref73
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref74
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref75
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref76
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref77
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref78
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref79
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref80
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref81
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref82

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Li, Y., Su, X., Riekki, J., Kanter, T., Rahmani, R., 2016. A sdn-based architecture for
horizontal internet of things services. In: Communications (ICC), IEEE International
Conference. Plus 0.5em Minus 0.4em. IEEE, pp. 1–7.

Li, X., Wang, X., Liu, F., Xu, H., Dhl, July 2018. Enabling flexible software network
functions with fpga acceleration. In: 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pp. 1–11.

Lin, P., Hart, J., Krishnaswamy, U., Murakami, T., Kobayashi, M., Al-Shabibi, A., Wang,
K.-C., Bi, J., Aug. 2013. Seamless interworking of sdn and ip, SIGCOMM Comput.
Commun. Rev. 43 (4), 475–476.

Lin, P., Bi, J., Hu, H., July 2014. Btsdn: bgp-based transition for the existing networks to
sdn. In: 2014 Sixth International Conference on Ubiquitous and Future Networks
(ICUFN), pp. 419–424.

Lin, P., Bi, J., Chen, Z., Wang, Y., Hu, H., Xu, A., April 2014. We-bridge: west-east bridge
for sdn inter-domain network peering. In: Computer Communications Workshops
(INFOCOM WKSHPS), 2014 IEEE Conference on, pp. 111–112.

Lu, J., Zhang, Z., Hu, T., Yi, P., Lan, J., 2019. A survey of controller placement problem
in software-defined networking. IEEE Access 7, 24290–24307.

Luo, T., Tan, H.P., Quek, T.Q.S., November 2012. Sensor openflow: enabling
software-defined wireless sensor networks. IEEE Commun. Lett. 16 (11), 1896–1899.

Majidi, A., Gao, X., Zhu, S., Jahanbakhsh, N., Chen, G., 2019. Adaptive routing
reconfigurations to minimize flow cost in sdn-based data center networks. In:
Proceedings of the 48th International Conference on Parallel Processing. Plus 0.5em
Minus 0.4em. ACM, p. 50.

E. Mannie, Generalized multi-protocol label switching (gmpls) architecture, 2004,
Accessed on: 01-Jan-2020. [Online]. Available: https://www.ietf.org/rfc/rfc3945.
txt.

Marconett, D., Yoo, S.J.B., Flowbroker, Apr 2015. A software-defined network controller
architecture for multi-domain brokering and reputation. J. Netw. Syst. Manag. 23
(2), 328–359.

Masoudi, R., Ghaffari, A., 2016. Software defined networks: a survey. J. Netw. Comput.
Appl. 67, 1–25.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., Mar. 2008. Openflow: enabling innovation in campus
networks, SIGCOMM Comput. Commun. Rev. 38 (2), 69–74.

Migration working group, Accessed on: 01-Jan-2020. [Online]. Available: https://www.
opennetworking.org/tag/migration-working-group/.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., Turck, F.D., Boutaba, R., 2016.
Network function virtualization: state-of-the-art and research challenges. IEEE
Commun. Surv. Tutor. 18 (1), 236–262.

Monsanto, C., Foster, N., Harrison, R., Walker, D., Jan. 2012. A compiler and run-time
system for network programming languages. SIGPLAN Not 47 (1), 217–230.

Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D., 2013. Composing
software-defined networks. In: Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, Ser. Nsdi13. Plus 0.5em Minus
0.4em. USENIX Association, Berkeley, CA, USA, pp. 1–14.

Mottola, L., Picco, G.P., Apr. 2011. Programming wireless sensor networks: fundamental
concepts and state of the art. ACM Comput. Surv. 43 (3), 19 119:51.

Nascimento, M.R., Rothenberg, C.E., Salvador, M.R., Corra, C.N.A., de Lucena, S.C.,
Magalhes, M.F., 2011. Virtual routers as a service: the routeflow approach
leveraging software-defined networks. In: Proceedings of the 6th International
Conference on Future Internet Technologies. ACM, New York, NY, USA, pp. 34–37.
ser. CFI 11. plus 0.5em minus 0.4em.

NBIWG, Accessed on: 01-Jan-2020. [Online]. Available: https://www.opennetworking.
org/tag/nbi-working-group/.

Nelson, T., Ferguson, A.D., Scheer, M.J., Krishnamurthi, S., 2014. Tierless programming
and reasoning for software-defined networks. In: 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). Plus 0.5em Minus
0.4emSeattle. USENIX Association, WA, pp. 519–531.

NEMO, 2015. NeMo: An Applications Interface to Intent Based Networks. Accessed on:
10-Feb-2020. [Online]. Available: http://nemo-project.net/.

NEMO, 2020. Netowrk Modeling for ODL Main. Accessed on: 01-Jan-2020. [Online].
Available: https://wiki.opendaylight.org/view/NEMO.

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G., 2007. Minizinc:
towards a standard cp modelling language. In: Bessire, C. (Ed.), In Principles and
Practice of Constraint Programming CP 2007. Springer Berlin Heidelberg, Heidelberg,
pp. 529–543. plus 0.5em minus 0.4emBerlin.

Ojo, M., Adami, D., Giordano, S., Dec 2016. A sdn-iot architecture with nfv
implementation. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.

Oktian, Y.E., July 2015. Secure your northbound sdn api. In: 2015 Seventh International
Conference on Ubiquitous and Future Networks, pp. 919–920.

ONF, Accessed on: 01-Jan-2020. [Online]. Available: https://www.opennetworking.
org/.

ONF-TS-006, 2012, OpenFlow switch specifications Version 1.3, Accessed on:
01-Jan-2020. [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.
0.pdf.

ONF-TS-012, 2013. OpenFlow switch specifications. Accessed on: 01-Jan-2020.
[Online]. Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf. Version 1.4.

ONF-TS-016, 2014. OpenFlow management and configuration protocol. Accessed on:
01-Jan-2020. [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.
pdf.

ONF-TS-025, 2015. OpenFlow switch specifications. Accessed on: 01-Jan-2020.
[Online]. Available: https://www.opennetworking.org/wp-content/uploads/2014/
10/openflow-switch-v1.5.1.pdf. Version 1.5.

OpenDaylight: A Linux foundation collaborative project, Accessed on: 01-Jan-2020.
[Online]. Available: https://www.opendaylight.org.

OpenDaylight AAA project, Accessed on: 01-Jan-2020. [Online]. Available: https://wiki.
opendaylight.org/view/AAA:Main.

Parniewicz, D., Doriguzzi Corin, R., Ogrodowczyk, L., Rashidi Fard, M., Matias, J.,
Gerola, M., Fuentes, V., Toseef, U., Zaalouk, A., Belter, B., Jacob, E., Pentikousis, K.,
2014. Design and implementation of an OpenFlow hardware abstraction layer. In:
Proceedings of the 2014 ACM SIGCOMM Workshop on Distributed Cloud
Computing, Ser. DCC 14. Plus 0.5em Minus 0.4em. ACM, New York, NY, USA, pp.
71–76.

Pfaff, B., Davie, B., December 2013. The open vSwitch database management protocol,
informational, internet engineering task force, RFC 7047. [Online]. Available:
http://www.ietf.org/rfc/rfc7047.txt.

B. Pfaff and B. Davie, The open vSwitch database management protocol, Accessed on:
01-Jan-2020. [Online]. Available: https://tools.ietf.org/pdf/rfc7047.pdf.

Pham, M., Hoang, D.B., June 2016. Sdn applications - the intent-based northbound
interface realisation for extended applications. In: 2016 IEEE NetSoft Conference
and Workshops (NetSoft), pp. 372–377.

Phemius, K., Bouet, M., Leguay, J., May 2014. Disco: distributed multi-domain sdn
controllers. In: 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–4.

Pranata, A.A., Jun, T.S., Kim, D.S., 2019. Overhead reduction scheme for sdn-based data
center networks. Comput. Stand. Interfac. 63, 1–15.

Qadir, J., Hasan, O., Firstquarter 2015. Applying formal methods to networking: theory,
techniques, and applications. IEEE Commun. Surv. Tutor. 17 (1), 256–291.

Qin, Z., Denker, G., Giannelli, C., Bellavista, P., Venkatasubramanian, N., May 2014. A
software defined networking architecture for the internet-of-things. In: 2014 IEEE
Network Operations and Management Symposium (NOMS), pp. 1–9.

Quagga routing suite, Accessed on: 01-Jan-2020. [Online]. Available: http://www.
nongnu.org/quagga/.

RabbitMQ, 2020. An open source messaging protocol. Accessed on: 01-Jan-2020.
[Online]. Available: https://www.rabbitmq.com/.

Reitblatt, M., Canini, M., Guha, A., Foster, N., 2013. Fattire: declarative fault tolerance
for software-defined networks. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, Ser. HotSDN 13. Plus
0.5em Minus 0.4em. ACM, New York, NY, USA, pp. 109–114.

T. L. Y. Rekhter and S. Hares, A border gateway protocol 4 (BGP-4), Accessed on:
01-Jan-2020. [Online]. Available: https://tools.ietf.org/html/rfc4271.

Y. Rodrigues, OpenDaylight ODL: network intent composition (NIC) - a real
intent-based solution, challenges and next stepsIntent framework, https://www.
serro.com/opendaylight-network-intent-composition-a-real-intent-based-solution-
challenges-and-next-steps/, Accessed on: 01-Jan-2020..

Salman, O., Elhajj, I., Kayssi, A., Chehab, A., Nov 2015. An architecture for the internet
of things with decentralized data and centralized control. In: 2015 IEEE/ACS 12th
International Conference of Computer Systems and Applications (AICCSA), pp. 1–8.

Samociuk, D., 2015. Secure Communication Between OpenFlow Switches and
Controllers. In: The Seventh International Conference on Advances in Future
Internet. IARIA.

Santos, M.A.S., Nunes, B.A.A., Obraczka, K., Turletti, T., de Oliveira, B.T., Margi, C.B.,
Sept 2014. Decentralizing sdn’s control plane. In: 39th Annual IEEE Conference on
Local Computer Networks, pp. 402–405.

Secci, S., Attou, K., Phung, D.C., Scott-Hayward, S., Smyth, D., Vemuri, S., Wang, Y.,
2017. ONOS security and performance analysis. (Report No. 1). Accessed on:
01-Jan-2020. [Online]. Available: https://onosproject.org/wp-content/uploads/
2018/01/ONOS-security-and-performance-analysis-brigade-report-no1.pdf.

Secci, S., Scott-Hayward, S., Wang, Y., Van, Q.P., 2018. ONOS security and performance
analysis. (Report No. 2). Accessed on: 01-Jan-2020. [Online]. Available: https://
www.opennetworking.org/wp-content/uploads/2018/11/secperf_report_2.pdf.

Sherwood, R., Chan, M., Covington, A., Gibb, G., Flajslik, M., Handigol, N., Huang, T.-Y.,
Kazemian, P., Kobayashi, M., Naous, J., Seetharaman, S., Underhill, D., Yabe, T.,
Yap, K.-K., Yiakoumis, Y., Zeng, H., Appenzeller, G., Johari, R., McKeown, N.,
Parulkar, G., Jan. 2010. Carving research slices out of your production networks
with OpenFlow. SIGCOMM Comput. Commun. Rev. 40 (1), 129–130.

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar,
G., 2010. Can the production network be the testbed? In: Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, Ser. OSDI10.
Plus 0.5em Minus 0.4em. USENIX Association, Berkeley, CA, USA, pp. 365–378.

Siow, E., Tiropanis, T., Hall, W., Jul. 2018. Analytics for the internet of things: a survey.
ACM Comput. Surv. 51 (4) 74:174:36.

Smith, M., Dvorkin, M., Laribi, V., Pandey, V., Gerg, P., Weidenbacher, N., OpFlex
control protocol. Accessed on: 01-Jan-2020. [Online]. Available: https://tools.ietf.
org/html/draft-smith-opflex-03.

Song, H., 2013. Protocol-oblivious forwarding: unleash the power of sdn through a
future-proof forwarding plane. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, Ser. HotSDN 13. Plus
0.5em Minus 0.4em. ACM, New York, NY, USA, pp. 127–132.

Soul, R., Basu, S., Kleinberg, R., Sirer, E.G., Foster, N., 2013. Managing the network with
merlin. In: Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
Ser. HotNets-XII. Plus 0.5em Minus 0.4em. ACM, New York, NY, USA. 24:124:7.

Stewart, R., 2007. Stream control transmission protocol. Accessed on: 01-Jan-2020.
[Online]. Available: https://tools.ietf.org/html/rfc4960.

Stribling, J., Sovran, Y., Zhang, I., Pretzer, X., Li, J., Kaashoek, M.F., Morris, R., 2009.
Flexible, wide-area storage for distributed systems with wheelfs. In: Proceedings of
the 6th USENIX Symposium on Networked Systems Design and Implementation, Ser.
NSDI09. Plus 0.5em Minus 0.4em. USENIX Association, Berkeley, CA, USA, pp.
43–58.

27

http://refhub.elsevier.com/S1084-8045(20)30037-0/sref83
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref84
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref85
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref86
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref87
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref88
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref89
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref90
https://www.ietf.org/rfc/rfc3945.txt
https://www.ietf.org/rfc/rfc3945.txt
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref92
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref93
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref94
https://www.opennetworking.org/tag/migration-working-group/
https://www.opennetworking.org/tag/migration-working-group/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref96
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref97
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref98
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref99
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref100
https://www.opennetworking.org/tag/nbi-working-group/
https://www.opennetworking.org/tag/nbi-working-group/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref102
http://nemo-project.net/
https://wiki.opendaylight.org/view/NEMO
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref103
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref105
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref106
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opendaylight.org
https://wiki.opendaylight.org/view/AAA:Main
https://wiki.opendaylight.org/view/AAA:Main
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref116
http://www.ietf.org/rfc/rfc7047.txt
https://tools.ietf.org/pdf/rfc7047.pdf
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref119
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref120
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref121
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref122
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref123
http://www.nongnu.org/quagga/
http://www.nongnu.org/quagga/
https://www.rabbitmq.com/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref125
https://tools.ietf.org/html/rfc4271
https://www.serro.com/opendaylight-network-intent-composition-a-real-intent-based-solution-challenges-and-next-steps/
https://www.serro.com/opendaylight-network-intent-composition-a-real-intent-based-solution-challenges-and-next-steps/
https://www.serro.com/opendaylight-network-intent-composition-a-real-intent-based-solution-challenges-and-next-steps/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref128
http://refhub.elsevier.com/S1084-8045(20)30037-0/opttAI4nB4hUj
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref129
https://onosproject.org/wp-content/uploads/2018/01/ONOS-security-and-performance-analysis-brigade-report-no1.pdf
https://onosproject.org/wp-content/uploads/2018/01/ONOS-security-and-performance-analysis-brigade-report-no1.pdf
https://www.opennetworking.org/wp-content/uploads/2018/11/secperf_report_2.pdf
https://www.opennetworking.org/wp-content/uploads/2018/11/secperf_report_2.pdf
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref133
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref134
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref135
https://tools.ietf.org/html/draft-smith-opflex-03
https://tools.ietf.org/html/draft-smith-opflex-03
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref137
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref138
https://tools.ietf.org/html/rfc4960
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref140

Z. Latif et al. Journal of Network and Computer Applications 156 (2020) 102563

Su, M., Alvarez, V., Jungel, T., Toseef, U., Pentikousis, K., Sept 2014. An OpenFlow
implementation for network processors. In: 2014 Third European Workshop on
Software Defined Networks, pp. 123–124.

Tam, A.S.W., Xi, K., Chao, H.J., April 2011. Use of devolved controllers in data center
networks. In: 2011 IEEE Conference on Computer Communications Workshops.
INFOCOM WKSHPS, pp. 596–601.

Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J., Jan
1997. A survey of active network research. IEEE Commun. Mag. 35 (1), 80–86.

Tootoonchian, A., Ganjali, Y., 2010. Hyperflow: a distributed control plane for
OpenFlow. In: Proceedings of the 2010 Internet Network Management Conference
on Research on Enterprise Networking, Ser. INM/WREN10. Plus 0.5em Minus
0.4em. USENIX Association, Berkeley, CA, USA. 33.

Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., Sherwood, R., 2012. On
controller performance in software-defined networks. In: Proceedings of the 2Nd
USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, Ser. Hot-ICE12. Plus 0.5em Minus 0.4emBerkeley. USENIX
Association, CA, USA. 1010.

Trois, C., Fabro, M.D.D., de Bona, L.C.E., Martinello, M., 2016. A survey on sdn
programming languages: toward a taxonomy. IEEE Commun. Surv. Tutor. 18 (4),
2687–2712 Fourthquarter.

Tseng, Y., Zhang, Z., Nat-Abdesselam, F., Controllersepa, Dec 2016. A
security-enhancing sdn controller plug-in for OpenFlow applications. In: 2016 17th
International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), pp. 268–273.

Turull, D., Hidell, M., Sjdin, P., June 2012. libnetvirt: the network virtualization library.
In: 2012 IEEE International Conference on Communications (ICC), pp. 5543–5547.

Vasseur, J., Roux, J.L., 2009. Path computation element (pce) communication protocol
(pcep). Accessed on: 01-Jan-2020. [Online]. Available: https://www.ietf.org/rfc/
rfc5440.txt.

Ventre, P.L., Tajiki, M.M., Salsano, S., Filsfils, C., 2018. SDN architecture and
southbound apis for ipv6 segment routing enabled wide area networks. CoRR
abs/1810.06008. [Online]. Available: http://arxiv.org/abs/1810.06008.

Voellmy, A., Hudak, P., 2011. Nettle: Taking the sting out of programming network
routers. In: Proceedings of the 13th International Conference on Practical Aspects of
Declarative Languages, Ser. PADL11. Plus 0.5em Minus 0.4em. Springer-Verlag,
Berlin, Heidelberg, pp. 235–249.

Voellmy, A., Kim, H., Feamster, N., 2012. Procera: a language for high-level reactive
network control. In: Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, Ser. HotSDN 12. Plus 0.5em Minus 0.4em. ACM, New York, NY,
USA, pp. 43–48.

Wang, L., Lu, Z., Wen, X., Knopp, R., Gupta, R., 2016. Joint optimization of service
function chaining and resource allocation in network function virtualization. IEEE
Access 4, 8084–8094.

Wang, J., Shou, G., Hu, Y., Guo, Z., Oct 2016. A multi-domain sdn scalability
architecture implementation based on the coordinate controller. In: 2016
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), pp. 494–499.

Wang, T., Xu, H., Liu, F., June 2017. Multi-resource load balancing for virtual network
functions. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pp. 1322–1332.

Wang, T., Liu, F., Xu, H., Oct 2017. An efficient online algorithm for dynamic sdn
controller assignment in data center networks. IEEE/ACM Trans. Netw. 25 (5),
2788–2801.

Weng, J., Weng, J., Zhang, Y., Luo, W., Lan, W., Jan 2019. Benbi: scalable and dynamic
access control on the northbound interface of sdn-based vanet. IEEE Trans. Veh.
Technol. 68 (1), 822–831.

Wibowo, F.X.A., Gregory, M.A., Dec 2016. Software defined networking properties in
multi-domain networks. In: 2016 26th International Telecommunication Networks
and Applications Conference (ITNAC), pp. 95–100.

Wibowo, F.X., Gregory, M.A., Ahmed, K., Gomez, K.M., 2017. Multi-domain software
defined networking: research status and challenges. J. Netw. Comput. Appl. 87
(Supplement C), 32–45.

Xu, Z., Liu, F., Xu, H., June 2016. Demystifying the energy efficiency of network
function virtualization. In: 2016 IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS), pp. 1–10.

Yamanaka, H., Kawai, E., Ishii, S., Shimojo, S., Sept 2014. Autovflow: autonomous
virtualization for wide-area OpenFlow networks. In: 2014 Third European
Workshop on Software Defined Networks, pp. 67–72.

YangUI, 2020. OpenDaylight DLUX: YangUI-user. Accessed on: 01-Jan-2020. [Online].
Available: https://wiki.opendaylight.org/view/OpenDaylight_dlux:yangUI-user.

Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Han, J., Lee, Y., 05 2015. Performance
evaluation of multi-stratum resources integrated resilience for software defined
inter-data center interconnect. Optic Express 23, 13384.

Yang, H., Zhang, J., Zhao, Y., Han, J., Lin, Y., Lee, Y., Sudoi, February 2016. Software
defined networking for ubiquitous data center optical interconnection. IEEE
Commun. Mag. 54 (2), 86–95.

Yangyang, W., Jun, B., Survey of mechanisms for inter-domain SDN. Accessed on:
01-Jan-2020. [Online]. Available: https://www.zte.com.cn/global/about/magazine/
zte-communications/2017/3/en_225/465746.

Yap, K.-K., Huang, T.-Y., Dodson, B., Lam, M.S., McKeown, N., 2010. Towards
software-friendly networks. In: Proceedings of the First ACM Asia-Pacific Workshop
on Workshop on Systems, Ser. APSys 10. Plus 0.5em Minus 0.4em. ACM, New York,
NY, USA, pp. 49–54.

Yazici, V., Sunay, M.O., Ercan, A.O., 2014. Controlling a software-defined network via
distributed controllers. CoRR abs/1401.7651.

Yin, H., Xie, H., Tsou, T., Lopez, D., Aranda, P., Sidi, R., SDNi, June 2012. A Message
Exchange Protocol for Software Defined Networks (SDNS) across Multiple Domains.
Internet Draft, Internet Engineering Task Force.

Yu, M., Wundsam, A., Raju, M., Nosix, Apr. 2014. A lightweight portability layer for the
sdn os. SIGCOMM Comput. Commun. Rev. 44 (2), 28–35.

Yu, H., Li, K., Qi, H., Li, W., Tao, X., Sept 2015. Zebra: an east-west control framework
for sdn controllers. In: 2015 44th International Conference on Parallel Processing,
pp. 610–618.

ZebOS, Accessed on: 01-Jan-2020. [Online]. Available: http://www.ipinfusion.com/
products/zebos/.

Zeng, C., Liu, F., Chen, S., Jiang, W., Li, M., April 2018. Demystifying the performance
interference of co-located virtual network functions. In: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, pp. 765–773.

Zhu, L., Karim, M.M., Sharif, K., Li, F., Du, X., Guizani, M., 2019. SDN Controllers:
Benchmarking & Performance Evaluation, vol. abs/1902. CoRR 04491. [Online].
Available: http://arxiv.org/abs/1902.04491.

Zohaib Latif did his BS in Electrical Engineering in 2006 and MS in Electrical and Elec-
tronics Engineering from University of Glasgow, UK in 2008. Since 2011 he was working
as senior lecturer and is currently a final year PhD scholar at School of Computer Sci-
ence, Beijing Institute of Technology, Beijing, China. His major interests are in Software
Defined Networks (SDN), Distributed Controllers in SDN, and Internet of Things.

Kashif Sharif (M′08) received his MS degree in information technology in 2004, and PhD
degree in computing and informatics from University of North Carolina at Charlotte, USA
in 2012. He is currently an associate professor for research at Beijing Institute of Tech-
nology, China. His research interests include information centric networks, blockchain &
distributed ledger technologies, wireless & sensor networks, software defined networks,
and data center networking. He also serves as associate editor for IEEE Access.

Fan Li (M′12) received the PhD degree in computer science from the University of North
Carolina at Charlotte in 2008, MEng degree in electrical engineering from the University
of Delaware in 2004, MEng and BEng degrees in communications and information system
from Huazhong University of Science and Technology, China in 2001 and 1998, respec-
tively. She is currently a professor at School of Computer Science in Beijing Institute of
Technology, China. Her current research focuses on wireless networks, ad hoc and sensor
networks, and mobile computing. Her papers won Best Paper Awards from IEEE MASS
(2013), IEEE IPCCC (2013), ACM MobiHoc (2014), and Tsinghua Science and Technology
(2015). She is a member of ACM and IEEE.

M. M. Karim is pursuing his Ph.D. in Computer Science and Technology at Beijing Insti-
tute of Technology, Beijing, China. Previously, he received both M.Eng and B. Eng in
Computer Science from Northwestern Polytechnical University, Xi’an, China. His research
interests include Software-Defined Networking, Information-Centric Networking, Named
Data Networks, and Next-Generation Networking

Sujit Biswas (GS′17) is enrolled as PhD fellow in Beijing Institute of Technology, China.
He received his M.Sc. degree in Computer Engineering from Northwestern Polytechnical
University, China in 2015. He is also an Assistant Professor with Computer Science and
Engineering department, Faridpur Engineering College, University of Dhaka, Bangladesh.
His basic research interest is in IoT, Blockchain, Mobile computing security and privacy.

Yu Wang (F′18) is a Professor of Computer Science at the University of North Carolina
at Charlotte. He holds a Ph.D. from Illinois Institute of Technology, an MEng and a BEng
from Tsinghua University, all in Computer Science. His research interest includes wireless
networks, smart sensing, and mobile computing. He has published over 200 papers in
journals and conferences, with four best paper awards. He has served as Editorial Board
Member of several international journals, including IEEE Transactions on Parallel and
Distributed Systems. He is a fellow of IEEE, a senior member of ACM, and a member of
AAAS.

28

http://refhub.elsevier.com/S1084-8045(20)30037-0/sref141
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref142
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref143
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref144
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref145
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref146
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref147
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref148
https://www.ietf.org/rfc/rfc5440.txt
https://www.ietf.org/rfc/rfc5440.txt
http://arxiv.org/abs/1810.06008
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref152
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref153
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref154
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref155
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref156
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref157
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref158
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref160
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref161
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref162
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref163
https://wiki.opendaylight.org/view/OpenDaylight_dlux:yangUI-user
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref164
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref165
https://www.zte.com.cn/global/about/magazine/zte-communications/2017/3/en_225/465746
https://www.zte.com.cn/global/about/magazine/zte-communications/2017/3/en_225/465746
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref167
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref168
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref169
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref170
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref171
http://www.ipinfusion.com/products/zebos/
http://www.ipinfusion.com/products/zebos/
http://refhub.elsevier.com/S1084-8045(20)30037-0/sref173
http://arxiv.org/abs/1902.04491

	A comprehensive survey of interface protocols for software defined networks
	1. Introduction
	1.1. Objective & contributions of this work
	1.2. Existing SDN studies
	1.3. Organization of paper

	2. Background
	2.1. SDN interfaces
	2.1.1. Southbound API
	2.1.2. Northbound API
	2.1.3. East & westbound API

	2.2. SDN interfaces and perception plane
	2.3. Virtualization and SDN interfaces

	3. Southbound interfaces (SBI) in SDN
	3.1. OpenFlow
	3.2. OpenFlow dependent SBI proposals
	3.3. OpenFlow independent SBI proposals
	3.4. Southbound APIs and perception plane
	3.4.1. SBI for wireless sensor networks
	3.4.2. SBI for Internet of Things

	3.5. SBIs and security challenges

	4. Northbound interfaces (NBI) in SDN
	4.1. Portability in NBI
	4.2. Programmability of NBI
	4.2.1. NBI programming language feature classification
	4.2.2. Programming languages for NBI
	4.2.3. Insights on NBI programmability

	4.3. Controller-based and intent-based NBIs
	4.4. Security in northbound interfaces

	5. Virtualization and SDN interfaces
	6. East/westbound interface (E/WBI) in SDN
	6.1. Interaction between SDN domains (eastbound APIs)
	6.1.1. Distributed architecture interfaces
	6.1.2. Hierarchical architecture interfaces
	6.1.3. Hybrid architecture interfaces
	6.1.4. Security in inter-controller communication
	6.1.5. Insights on SDN domain interaction

	6.2. Interaction between SDN and traditional networks (westbound APIs)

	7. Future research directions
	7.1. Southbound interface
	7.2. Northbound interface
	7.3. Virtualization
	7.4. East/westbound interface

	8. Conclusion
	Acknowledgment
	References

