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Software Defined Network implementation has seen tremendous growth and deployment in different types of
networks. Compared to traditional networks it decouples the control logic from network layer devices and cen-
tralizes it for efficient traffic forwarding and flow management across the domain. This multi-layered architec-
ture has data forwarding devices at the bottom in the data plane, which is programmed by controllers in the
control plane. The high-level management plane interacts with the control plane to program the whole network
and enforce different policies. The interaction among these planes is done through interfaces that work as com-
munication/programming protocols. In this survey, we present a comprehensive study of these interface and
programming protocols, which are primarily classified into southbound, northbound, and east/westbound inter-
faces. This work first classifies each of them into subcategories and then presents a comprehensive comparative
analysis. As the different interfaces have different properties, hence, the sub-classification and their analysis are
done using different properties. In addition, we also discuss the impact of different virtualization techniques,
such as hypervisors, on interface protocols and inter-plane communication. More over specialized interfaces for
emerging technologies such as the Internet of Things and wireless sensor networks are also presented. Finally,
the paper highlights several short term and long term research challenges and open issues specific to the SDN
interface protocols.

Software Defined Networks (SDN) (Kreutz et al., 2015) is an emerg-
ing form of networks that promises to resolve these issues by decoupling

1. Introduction

Over 4 billion Internet users are connected through almost 65,000
Autonomous Systems (AS) throughout the world, and increasing rapidly
every year (Kemp, 2018; Yangyang and Jun 2020). Every AS requires
a set of applications to manage these networks. The implementation
of this diverse range of applications becomes difficult by using tradi-
tional network elements. These elements are usually based on Appli-
cation Specific Integrated Circuits, which may be vendor specific and
requires embedded OS with hundreds of lines of code in low-level lan-
guages. Configuration and implementation of policies on these devices
is not only time consuming but also difficult. Furthermore, it introduces
rigidity in networks, due to the application-specific nature of devices,
which makes network management complex.

the control plane from the data plane and provides a software-based
centralized controller. By this separation of control plane and data
plane, network switches become simple forwarding devices. Whereas,
decision making is shifted to the controller, which provides a global
view of the network and programming abstractions. This centralized
entity provides programmatic and real-time control of underlying net-
works and devices to operators. By using SDN, network management
becomes straightforward and helps in removing rigidity from the net-
work.

The layered structure of SDN architecture, as shown in Fig. 1 has
three major planes as data plane, control plane, and management
plane. Data plane contains physical network elements, which form
the data path. The control plane has a Network Operating System
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Fig. 1. Layered view of SDN Architecture and the interfaces.

(NOS), also referred to as a controller, which implements rules on data
plane devices. These rules and policies are designed in the manage-
ment plane of SDN architecture. Communication among these planes is
established by using well-defined Application Programmable Interfaces
(APIs). These interfaces are divided into Southbound, Northbound, East,
and Westbound APIs. The control plane and data plane communicates
through the Southbound API, which enables flow installation and con-
figuration of devices. The control plane and management plane uses
Northbound API to provide programmability in SDN. Inter-controller
communication of SDN domains is established using Eastbound API,
whereas Westbound API is responsible for the legacy domain to SDN
domain communication.

This paper specifically deals with interface protocols for SDN. These
interfaces play an important role in the overall communication process
between different planes and components. The southbound interface
can be segregated into OpenFlow (OF) (McKeown et al., 2008), OF
dependent, and OF independent proposals. OF is the most commonly
used southbound interface (SBI) in research and commercial SDNs.
Extensions of SBI into emerging technologies, such as sensor networks
and the Internet of Things, can also be treated as a special class of SBIs,
due to their unique requirements. More precisely, IoT & sensor devices
act as a perception plane, which can be visualized as a non-OF com-
pliant extension of data plane (Ojo et al., 2016). The devices are usu-
ally connected to data plane through gateways. Northbound interfaces
are classified in terms of portability, programmability, controller based,
and intent-based solutions. In this article, we consider virtualization
as middleware between different layers and the hardware. Hence, the
interaction of APIs with different virtualization techniques requires sep-
arate classification. Eastbound interfaces are categorized in distributed
and hierarchical architectures due to placement and communication of
controllers, whereas westbound interfaces usually use traditional Bor-
der Gateway protocols to bridge the gap between SDN and traditional
networks.

1.1. Objective & contributions of this work

Different aspects of software defined networks have been surveyed
in the past, but to the best of our knowledge, there is no comparative
analysis or survey which is specific to the different interface protocols.
There are a significant number of interface protocols proposed in the
literature and used in the industry. This work comprehensively covers
all such protocols, while presenting a detailed comparative analysis.
The significant contributions of this work are as follows.

o The original contribution of this article is to present a system-
atic survey and classification of different interface protocols for
software-defined networks.
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The most commonly used southbound interface is OpenFlow, and
this work classifies various solutions for southbound communi-
cation as dependent and independent of OpenFlow while com-
paring them for their properties and advantages.

We also present OpenFlow like solutions for perception plane,
i.e. wireless sensor networks & the Internet of Things. It is impor-
tant to note that IoT (and sensor) networks are below the control
plane, hence they only interact with SBIs.

We classify the northbound interfaces based on portability, pro-
grammability, controller-based, and intent-based solutions, and
individually analyze the available solutions.

SDN combined with virtualization is a new paradigm and we
analyze both southbound and northbound interfaces with respect
to the virtualization platforms.

We also categorize & discuss east and westbound APIs for com-
munication between SDN domains and legacy networks.

Finally, we discuss future research directions for each of the
interfaces separately in the end.

1.2. Existing SDN studies

A comprehensive study of SDN is a difficult task as it is a multi-
dimensional field. However, it has been explored thoroughly from dif-
ferent aspects in several studies. Works in (Masoudi and Ghaffari, 2016;
Gong et al., 2015; Cox et al., 2017; Karakus and Durresi, 2017; Hu et
al., 2018) have discussed SDN for its application, architecture, control
and application plane, component design, evaluation testbeds, simu-
lation environments, and challenges. Works in (Karakus and Durresi,
2017; Hu et al., 2018; Fonseca and Mota, 2017; Trois et al., 2016) have
studied control plane scalability, consistency, reliability, controller dis-
tribution, load balancing, fault tolerance, and programming languages.
In (Lu et al., 2019), authors classify controller placement problem
into four aspects which include; reliability, latency, cost, and multi-
objectiveness. Moreover, it provides an analysis of specific algorithms
in different network scenarios. Research regarding emerging technolo-
gies in SDN, such as WSNs and IoT are discussed in (Kobo et al., 2017;
Ali et al., 2017; Bera et al., 2017). In (Blenk et al., 2016), a compre-
hensive survey on hypervisors is presented, where different hypervisors
are categorized according to their architectures and execution platforms
for SDN, while in (Li and Chen, 2015), authors present a relationship
between NFV and SDN and highlight the main challenges in Software
Defined NFV architecture. However, the focus of this work is on the
interface protocols and APIs in the layered structure and their associ-
ated challenges.

1.3. Organization of paper

The paper is organized into eight sections, as shown in Fig. 2, where
section 2 describes background information related to SDN interfaces
and their interaction with emerging technologies and virtualization
techniques. OpenFlow and other proposals for Southbound Interfaces
are presented in Section 3. Northbound interfaces and their classifica-
tion is presented in Section 4 with the aspects of portability and pro-
grammability. The effects of virtualization on SDN interfaces are dis-
cussed in Section 5. Communication among SDN domains and with
legacy networks is presented in Section 6. Section 7 outlines future
directions, and conclusions are drawn in 8.

2. Background

The main objective of this paper is to study the interfaces among
different planes of SDN. Before delving into such details, we first give
an overview of SDN architecture, its different components, and their
functionalities.
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Fig. 2. Overview and structure of this survey.

In traditional networking, control functionalities and data forward-
ing elements are embedded in a single device. Due to tightly coupled
control and data planes, network control is distributed in these devices,
which makes it difficult to run applications on these elements due to
vendor and language specifications. Moreover, the management and
configuration of such devices become difficult with increasing scalabil-
ity. SDN paradigm breaks this tight coupling of control functions and
forwarding elements and provides a unified control for running differ-
ent types of applications (Kreutz et al., 2015). presents comprehensive
details on the working and architecture of SDNs, hence, we focus only
on the interface details.

Before SDN, the concept of network programmability was studied
from two aspects: Active Networking (Tennenhouse et al., 1997) and
Programmable Networks (Campbell et al., 1999) (A&PN). Active Net-
working discusses the injection of intelligence in the network beyond
the conventional processing of packets. Whereas, Programmable Net-
works allows the control of network device behavior and flow con-
trol through software. This lays a clear foundation for the separation
between data and control plane, which later combined to become the
Software Defined Networking paradigm. The main reason for being a
wide acceptance of this paradigm is the rapid innovation in both planes
(i.e. control plane & data plane) (Haleplidis et al., 2015).

A controller is the fundamental component of the SDN control plane.
One of the key roles of a controller is to manage the traffic in underlying
network elements by using a set of instructions. There is a wide range
of controllers in SDN, and work in (Zhu et al., 2019) presents a com-
prehensive review of their capabilities. Features of each controller may
differ from one another, but the core and essential functionalities of all
the controllers are similar, for example, topology information, statistics,
notifications, and device management. To perform these tasks, every
controller uses a southbound interface such as OpenFlow. However,
some of the controllers offer a wide range of southbound interfaces
(e.g. OpenDaylight). Similarly, to run various applications, every con-
troller offers a northbound interface, however, there is no standardized
interface for this communication. Some data plane architectures have
multi-controller capabilities, which require eastbound communication
interfaces among the distributed controllers, whereas controllers may
try to communicate with legacy routers using the westbound interface.
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2.1. SDN interfaces

APIs are an architectural component of SDN used to push configu-
rations or information to forwarding elements or applications respec-
tively. Fig. 3 shows the different interface APIs and some of their prop-
erties.

2.1.1. Southbound API

Southbound API (SBI) is an SDN enabler, which provides a com-
munication protocol between the control plane and the data plane.
This API is used to push configuration information and install flow
entries in the data plane. It also provides an abstraction of the network
device’s functionality to the control plane. Major challenges of south-
bound interfaces are heterogeneity, vendor-specific network elements,
and language specifications. The southbound interface in SDN resolves
these issues by providing an open and standardized interface. There are
several examples for Southbound APIs, however OpenFlow (McKeown
et al., 2008) is considered as a standard in SDN. Section 3 presents a
detailed review of different SBIs.

2.1.2. Northbound API

The numerous benefits of SDN are fruitless if applications can not
benefit. SDN adoption depends on its ability to support a wide range of
applications. Northbound APIs (NBIs) play an integral role for applica-
tion developers and provides a common interface between controller
and management plane, by providing the information of underlying
devices for application development. Unlike the southbound interface,
the northbound interface has seen fewer standardization efforts (Kreutz
et al., 2015). A wide range of NBIs is offered by current controllers and
programming languages. In this paper, we discuss them from different
aspects in Sections 4 and 5.
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2.1.3. East & westbound API

Centralized control over the network is the key feature of SDN, but
only a limited number of switches can be handled by a single controller.
In large scale networks, distributed controllers become a requirement,
where every controller has its domain with underlying forwarding
devices. Controllers need to share information about their respective
domains for a consistent global view of the entire network. Eastbound
APIs are used to import and export information among distributed con-
trollers. Some examples of these interfaces are (Yin et al., 2012; AMQP,
2020; RabbitMQ, 2020). On the other hand, Westbound APIs enable
the communication between legacy network devices (routers) with the
controllers. Some example solutions are discussed in (Nascimento et al.,
2011; Lin et al., 2013, 2014a). Detailed discussion and review are given
in Section 6.

2.2. SDN interfaces and perception plane

The use of SDN in domains other than local networks and data cen-
ters can be beneficial as well as challenging.

Wireless Sensor Networks (WSNs) have been deployed in
widespread applications from civil to military, and from environmental
to health care. In more recent years, the Internet of Things (IoT) (Siow
etal., 2018) has evolved as a major future Internet component (Bradley,
2013), where WSNs are integrated into a larger ecosystem with hetero-
geneous devices and use cases. SDN can provide centralized control
and configuration, policy enforcement, and programming abstraction,
for large scale IoT (and sensor) networks (Boulis et al., 2007; Mottola
and Picco, 2011). Although some research has been done for the soft-
warization of WSNs (Kobo et al., 2017; Khan et al., 2016), and IoT
(Bizanis and Kuipers, 2016), however, it is limited to architecture and
security perspective. Most of IoT and sensor networks are visualized as
a perception layer below data plane in the SDN architecture, as shown
in Fig. 3. A major challenge is to extend the SBI into the perception
plane beyond OF switches.

2.3. Virtualization and SDN interfaces

Network Function Virtualization (NFV) (Mijumbi et al., 2016) offers
new ways to deploy, design, and manage networking devices. It sepa-
rates network functionality, such as firewalls, Network Address Trans-
lation (NAT), and Domain Name Service (DNS), from hardware devices,
so that they can be run remotely. There are several studies (Wang et al.,
2016a; Fei et al., 2017, 2018; Zeng et al., 2018; Wang et al., 2017a; Li et
al., 2018; Xu et al., 2016) on NFV placement, scheduling, routing, load
balancing, 5G applications, performance interference, acceleration via
FPGA, and energy efficiency. Similarly by using hypervisors, devices,
hardware resources, and entire network slices can also be virtualized.
Fig. 4 shows the interaction of NFV elements within the SDN architec-
ture and communication with different planes. It is important to note
that, SDN, NFV, and other softwarization techniques are not depen-
dent on each other, but are rather complementary. Virtual Infrastruc-
ture Manager (VIM) controls and manages NFV infrastructure storage,
computing, and network resources. It also keeps a mapping of the allo-
cation of virtual resources to physical resources and manages virtual
networks, links, and ports. Virtual Network Function Manager (VNFM)
is capable of handling multiple Virtual Network Functions (VNFs) by
using the Element Management System (EMS). NFV can be utilized in
two ways. One is the virtualization of network resources by making
slices (e.g. Hypervisors) where the southbound interface is involved.
The other is to control these slices (e.g. Applications based Virtualiza-
tion) which involves the northbound interface. Both of these interfaces
(Northbound and Southbound) then become an integral part of NFV,
while still being utilized by the SDN controller for flow installation and
application communication.
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3. Southbound interfaces (SBI) in SDN

Software Defined Networking separates network control and for-
warding functions. With the help of southbound interfaces, forwarding
function is kept on the device whereas, network control is shifted to an
external controller. Southbound APIs enable the link between the data
plane and the control plane. It is very important that this link remains
available and secure, otherwise, the forwarding elements cannot func-
tion.

The main objective of this interface is to push notifications given
by the controller, to data plane devices, and provide information about
these devices to the controller. It allows the discovery of network topol-
ogy, define network flows, and implement requests sent by the man-
agement plane. Some of commonly known southbound interfaces are
OpenFlow (OF) (McKeown et al., 2008), FORwarding & Control Ele-
ment Separation (ForCES) (Haleplidis et al., 2015), Open virtual Switch
Database (OvSDB) (Pfaff and Davie, 2013), Protocol Oblivious Forward-
ing (POF) (Song, 2013), OpFlex (Smith et al., 2020), OpenState (Bianchi
et al., 2014).

Fig. 5 presents the classification of different southbound interface
proposals. OpenFlow (McKeown et al., 2008) is the most commonly
used API and considered as a standard southbound interface. Most of
the proposals are either extensions or somehow dependent upon Open-
Flow. Two proposals for southbound interfaces (i.e. OvSDB and OF-
Config) work as OpenFlow companions and help it to provide config-
uration capabilities. Whereas, proposals like ForCES, OpFlex, and Net-
Conf, are independent of OpenFlow. Proposals like Sensor OpenFlow
(SOF) (Luo et al., 2012), Software Defined Wireless Networks (SDWN)
(Costanzo et al., 2012), SDN for WIreless SEnsors (SDN-WISE) (Galluc-
cio et al., 2015), and HUBsFlow (Cicioglu and CalhanHubsflow, 2019)
are southbound interfaces defined specifically for perception plane. In
the following subsections, the same classification is discussed, with an
additional section on the security perspective of SBI.

3.1. OpenFlow

OpenFlow is a standardized and most commonly used southbound
interface. It was designed particularly for SDN to provide commu-
nication between controller and forwarding elements. OpenFlow has
evolved from version 1.0 with only 12 fixed matching fields and a sin-
gle flow table to version 1.5 with 41 matching fields and several new
functionalities. Fig. 6 shows the difference & capabilities of different
OpenFlow versions, while work in (Ching-Hao and Lin, 2015) presents
technical details of each capability.

OpenFlow enabled devices must have three main components; Flow
Table, Secure Channel, and OpenFlow protocol. Devices may have one
or more flow tables, while the secure channel connects them with the
controller, and the protocol provides communication with external con-
trollers as shown in Fig. 7. OpenFlow pipeline has several flow tables
along with the group table and meter table. Tables in OpenFlow enabled
switches have flow entries in the format of match, actions, and statis-
tics. For each packet, header matching is done which includes; source
and destination IP, source and destination port, source and destination
MAC, along with VLAN tags, and Ethernet types. Flow tables are nor-
mally numbered and start from O and the packet processing pipeline
always starts from this table. Based on this matching a particular action
is taken to forward the packet on one or more ports. If no match
is found, then it is forwarded to the controller using Packet IN mes-
sage. This message contains the information of the ingress port, packet
header, and Buffer ID where the packet is stored. To respond Packet IN
message, controller sends a Packet OUT message. This message contains
Buffer ID of corresponding Packet IN message and actions to perform
(e.g. Forward to a particular port, drop, etc.). To handle the subsequent
packets of the same flow, the controller sends a Flow_Mod message to
switch with the instruction to insert rules into the flow table. Given
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rules are matched for the subsequent packets of the same flow and
action is taken at line speed. Meanwhile, the counter is updated accord-
ingly and statistics are generated per rule, per table, per port, per queue
or per timer.

2011 Version 1.2 2011

e OXM Using TLV Structure
o IPv6 Support
« Controller Role Exchange,

Version 1.1
« Multiple Table
o Group Table
o VLAN and MPLS Support

Version 1.0 2009
« Single Table

« Fixed Matching Fields

3.2. OpenFlow dependent SBI proposals

This sub-section describes the Southbound proposals which are
based on OpenFlow and attempt to enhance its existing features or in its
newer versions. Some of these issues have been addressed by OpenFlow

Version 1.4 2013

« Synchrozined Table

« Bundle Supports Group
Modifications

Version 1.5 2015
« Egress Table

« Scheduled Bundle

Version 1.3 2012
« Meter Table

o Table-miss Entry

Fig. 6. Major properties of different OpenFlow versions.
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fully, some are resolved partially, and few of the shortcomings are still
present in OpenFlow protocol. Table 1 represents such solutions along
with their objectives.

Enabling legacy network devices to become OpenFlow compliant
is a complicated task. Hardware Abstraction Layer (HAL) (Parniewicz
et al., 2014) attempts to resolve this issue. It decouples hardware-
specific control and management logic from the network node abstrac-
tion, which hides device complexity and vendor specific features. HAL
achieved this decoupling by introducing two sub-layers: Cross Hard-
ware Platform Layer (CHPL) and Hardware Specific Layer (HSL). CHPL
covers node abstraction, virtualization, and configuration mechanisms,
whereas HSL is responsible for discovering the particular hardware plat-
form and perform all required configuration using Hardware Specific
Module (HSM). Furthermore, every network element in this environ-
ment has its protocol for communication purposes, controls, and man-
agement of the underlying system. HSL is used to hide this complexity
and heterogeneity. Depending on the type of network devices, commu-
nication between these two layers is done by using the Abstract For-
warding API and Hardware Pipeline API. Another interesting feature of
HAL is its compatibility with multiple versions of OpenFlow.

OpenFlow has undergone many changes since its initial versions
and pace of development has required other third-party hardware and
software in data and control planes to make massive changes to their
solutions. OpenFlow has detailed specification documents for each ver-
sion but to create new libraries for each platform is time-consuming.
Revised OpenFlow Library (ROFL) (Sufié et al., 2014) resolved this
problem and provided a clean and easy to use API which hides the
details of respective protocol versions (i.e. 1.0, 1.2 and 1.3), and sim-
plifies application development. ROFL uses eXtensible Datapath dae-
mon (xDPd) which is a framework for developing SDN datapath ele-
ments. It uses three major libraries, ROFL-common, ROFL-pipeline, and
ROFL-HAL. ROFL-common is used to provide the basic support of Open-
Flow protocol which comprises of protocol parsers and message man-
gling. ROFL-pipeline is employed as a data model whereas ROFL-HAL
is implemented as an interface.

DevoFlow (Curtis et al., 2011) addressed the overhead created by
the OpenFlow, due to full control and visibility of all flows through
the software controller. It claims that the ratio of the control plane
to the data plane is four orders of magnitude and less than its aggre-
gate forwarding rate. DevoFlow attempts at resolving this problem by
devolving control of most flows back to switches while the controller
maintains control over targeted and significant flows only. In this way,
switch-controller interactions and Ternary Content Addressable Mem-
ory (TCAM) entries may reduce overhead. Another target is to provide
the aggregated flow statistics to maintain enough visibility of network,
but this approach required major modifications in switch design which
may be costly.

The same problem was addressed by OpenState (Bianchi et al.,
2014), where authors argue that all control should not be given to a cen-

tralized controller and making switch stateless is a compromise rather
than a choice which causes extra communication between devices and
controller. It also suggests that the programmers can deploy states in
the device rather than using an external controller. OpenState abstrac-
tion relies on the Extended Finite State Machine (XFSM) that allows the
implementation of several stateful tasks inside forwarding devices. It
uses XFSM as an extension of the OpenFlow match-action phenomenon
and allows the implementation of several stateful tasks inside the for-
warding element without introducing overhead for the controller. All
the tasks, which involve local states, such as port knocking and MAC
learning, can be executed directly in network elements without any
overhead of control plane communication or processing delay.

Another problem in OpenFlow reported by POF (Song, 2013) is that
it is reactive rather than proactive, and the data plane needs to be pro-
tocol aware. Due to this reason, data plane devices need to understand
packet headers in a specific format to extract keys and execute packet
processing, which again causes overhead. Moreover, the data plane is
almost stateless and cannot perform any action without the involve-
ment of controller, which means data and control planes are not prop-
erly decoupled hence leading to problems like a hindrance in innova-
tion, reducing programmability potential, and causing complexity for
large scale networks. To resolve all these problems POF proposed Flow
Instruction Set (FIS) which makes forwarding elements as white boxes,
protocol oblivious and ensures its simplicity. FIS is a protocol indepen-
dent set of instructions that helps to compose network services from
the control plane. At the same time, it helps in completely decoupling
control and data plane so that both of these planes can evolve indepen-
dently.

P4 (Bosshart et al., 2014) is another proposal that works in con-
junction with OpenFlow. It argues that rather than extending Open-
Flow specifications repeatedly, it is better to have a flexible mechanism
to parse packets and match header fields. It acts as a general interface
between the control plane and data plane and raises the level of abstrac-
tion for programming. P4 supports a programmable parser where new
headers can be defined. Match & action stages in OpenFlow are in series
whereas, P4 supports these stages in series as well as parallel. Moreover,
similar to POF, it solves the issue of protocol dependency. Several stud-
ies have been done based on P4 which are integrated into other tech-
nologies and not directly related to SBIs. For example, Tango (Lazaris et
al., 2014) is a control system to optimize the SDN controller for switch
diversity. Similarly, Dasu et al. (2017) proposed the addition of geo-
tags to IP packets to provide location-based services and enhance the
capabilities of communication.

In Programming Abstraction Datapath (PAD) (Belter et al., 2014)
authors discuss switch capabilities for programmability and provide a
southbound API for other types of devices such as Optical Switches.
It provides generic programming of forwarding devices by using
byte operations that define protocol headers and functions. A packet
received at the ingress port using PAD is bound with metadata and pro-
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Table 1
Comparison of OpenFlow dependent SBI proposals.
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Literature

Objective

Solution

Benefits Network Type Resolved by OpenFlow?

POF (Song, 2013)
OpenState (Bianchi et
al., 2014)

ROFL (Sufié et al., 2014)

HAL (Parniewicz et al.,
2014)

PAD (Belter et al., 2014)

Remove dependency on
protocol specific
configuration

Reduce Overhead
between the switch
and controller

Development of enabled
applications and
support new OF
versions and
extensions

To realize OF
functionality in legacy
network devices

Expose switch

Flow Instruction Set
(FIS)

Making devices as
eXtensible Finite State
Machines (XFSM)

eXtensible DataPath
daemon (XDPd)

Cross Hardware Platform
Layer and Hardware
Specific Layer

Generic Byte Operation

capabilities and better
utilization of network
devices

DevoFlow (Curtis et al., Control traffic overhead

2011)

Giving control to switch
and controller only
manages targeted
flows

P4 (Bosshart et al., 2014)  Switch diversity and
addition of new tags

Programmable packet
parser

OvSDB (Pfaff and Davie,
2020) (For Config.)

Uses database server and
switch daemon

Enhances configuration
capabilities of
OpenFlow

Remote configuration of
OpenFlow switches

OF-Config (ONF-TS-016,
2014) (For Config.)

Uses configuration points

Reduce network cost by Not Mentioned No
using commodity
forwarding elements

Reduce Interaction
between controller and
forwarding elements

Supports multiple
versions of

simultaneously

Not Mentioned Partially Solved

Not Mentioned No

Legacy Network devices Data Center Networks Yes
to communicate with
SDN domains

Works for devices which
are not working on
packets e.g. Optical
Switches

Reduce Interaction
between controller and
forwarding elements
but major changes
required in switch

Programmers can add
new tags and no
specifications of
OpenFlow required

Provides better
configuration

Not Mentioned Yes

Data Center Networks Partially Solved

Data Center Networks No

Hybrid Networks -

Provides flexibility for
configuration in
OpenFlow switches

Hybrid Networks -

cessed through a search engine, which is a functional component of
PAD. As a result of this search, a function name is added which will
be executed on this packet in an execution engine. Finally, the packet
is forwarded to an egress port for transmission. PAD is applicable to
optical flows, where forwarding functions do not contain packet infor-
mation but other instructions.

Configuration: There are two solutions that provide a configuration
in OpenFlow: OvSDB and OF-Config. These protocols form a relation-
ship between controller and switches. OpenFlow determines the route
of the packet but it does not provide the management and configu-
ration which is necessary to assign IP addresses or port allocation. In
traditional networks, vendors normally use different configurations and
management methods which either depend on protocols like SNMP or
use the command-line interface. SDN provides a holistic view of every
component of the network to engineers.

OvSDB (Pfaff and Davie, 2020) is designed to be used as a virtual
switch to forward traffic between different virtual environments. It is
an open-source switch, hence open to programmatic extensions and
control using OpenFlow, and based on client and server implementa-
tion. Open vSwitch is a complementary protocol to OpenFlow. Inside
a virtual switch, there is ovsdb-server, ovsdb-daemon and optionally
a forwarding path. A virtual switch uses OpenFlow as an interface to
communicate with the control and management cluster. Furthermore,
it allows the creation of multiple virtual switch instances, set Quality
of Service (QoS) policies on interfaces, and collect stats. Managers can
specify the number of virtual bridges by using OvSDB which allows
them to create, configure, and delete ports.

OpenFlow Configuration Protocol (OF-Config) (ONF-TS-016, 2014)
has a special set of rules to define the mechanism for controllers to
access and modify the configuration data on OpenFlow switches. It
works as a companion of OpenFlow protocol and allows remote config-
uration of OpenFlow switches. The major difference between OpenFlow

and OF-Config is that OF modifies match-action rules which effects flow
in switch datapath. Whereas, OF-Config remotely configures multiple
OF datapaths in a physical and virtual platform.

Insights: Most of the solutions based on (or extensions of) Open-
Flow address the shortcomings in it. Some of these solutions have
already been adopted by OpenFlow, whereas some of these are still
open challenges. The key insight is that two main factors dominate
OF research: Legacy device compatibility, and control overhead. OF
developed generic solutions similar to HAL (Parniewicz et al., 2014)
& PAD (Belter et al., 2014) for compatibility, and DevoFlow (Curtis et
al., 2011) for control overhead reduction, which was for specific types
of networks as shown in Table 3. OpenFlow version 1.3 (ONF-TS-006,
2012) addressed compatibility by introducing OpenFlow hybrid, while
version 1.4 (ONF-TS-012, 2013) has added support to optical switches.
To reduce the overhead between controller and data plane devices
OpenFlow proposed Stats-Trigger in version 1.5 (ONF-TS-025, 2015)
which solved the problem partially. However, issues like the support of
multiple versions of OpenFlow and protocol dependency are still open
research challenges.

3.3. OpenFlow independent SBI proposals

In this sub-section, southbound API proposals that are independent
of OpenFlow or are parallel proposals have been discussed. Table 3
presents a summary of all these solutions with their objectives, solu-
tions, and benefits.

Forwarding and Control Element Separation (ForCES) (Haleplidis
et al., 2015) standardized by IETF, is a proposal which is designed to
replace OpenFlow. It defines two entities as Control Element (CE) and
Forwarding Element (FE), which are logically kept in the same physical
device without changing the architecture of traditional networks and
without the involvement of an external controller as shown in Fig. 8.



Z. Latif et al.

Legend:
[€----- » Inter CE Communication
€ - -» Communication Among FEs and External Interfaces
[€—>» Communication Among CE & FE
() Communication Among Elements & Managers

—— Inter Manager Communication

ForCES Network Elements

D
.

Y o
c
8
Control Element >» Control ¢ ... Control a
Manager (CEM) Element (CE) Element (CE) g
c
o
A 3 (3]
\ 4 ‘L o
Forwarding Forwarding &
Element Element o
(reny () (o () | 2
Forwarding Element S ____) €----> '§
Manager (FEM) @ @ g
2
A AA
. 1 O
H T T
Yassssssssssssassnssnsnnnnnnnnnn L T T P e T TP PP L
1 1
2 External Interfaces \ 4

Fig. 8. ForCES (Haleplidis et al., 2015) architecture.

It uses a Logical Function Block (LFB) which resides inside FE and has
a specific function to process packets and allows CE to control FE. FEs
take LFBs as a graph and uses them to perform well-defined actions and
do logical computations on packets that are passing through them. Each
LFB can perform a single action on a packet.

ForCES messages are the key enabler to provide the control of FEs
to CEs, and just like OpenFlow it also requires a transport protocol. This
transport protocol not only provides communication between FE and CE
but also provides extra services like reliability and security mechanisms.
Rather than using TCP for this purpose (as used in OpenFlow), ForCES
uses Stream Controlled Transmission Protocol (SCTP) (Stewart, 2007)
which provides a range of reliability levels. Another major reason for
using SCTP is the duplication and re-transmission nature of TCP, which
in case of congestion, will make things worse. SCTP is also a good design
choice for ForCES for its resiliency to failure detection with built-in
recovery mechanisms.

A detailed comparison between OpenFlow and ForCES is discussed
in (Hares, 2020) but in this paper, we provide a summarized and con-
densed comparison between these two competitors. Table 2 summa-
rizes some of the major differences in OpenFlow and ForCES. One of the
major differences between OpenFlow and ForCES is that every time new
functionality is added, OpenFlow has to be modeled and standardized
accordingly. Whereas, ForCES provides extensibility without the need
for standardizing again and again. ForCES deployment is not restricted
to any specific design of forwarding elements, but for OpenFlow, there
are switch specifications of predefined features. However, despite being
a mature solution, ForCES could not gain widespread adoption by ven-
dors.

OpFlex (Smith et al., 2020), proposed through a draft for IETF from
Cisco, is a protocol that provides communication between the cen-
tralized controller and data plane but with a very different scope as
compared to OpenFlow. OpFlex is based on a declarative policy infor-
mation model that means it centralizes only policy management and
implementation but distributes intelligence and control. With the aim
of scalability, OpFlex tries to distribute the complexity in such a way
that forwarding devices are responsible for managing the whole net-
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Fig. 9. OpFlex (Smith et al., 2020) architecture.

work except policies. These policies are defined at logically centralized
Policy Repository (PR) which communicates with Policy Elements (PE)
using the OpFlex protocol. End Point devices are connected with Pol-
icy Elements and get registered by using the EndPoint Registry which
is responsible for the addition/removal of End Points. Another repos-
itory in OpFlex is Observer (OB) which is responsible for statistics of
faults and events. This interaction is depicted in Fig. 9. One major lim-
itation of OpFlex, as compared to OpenFlow, is that it takes away the
key feature of programming the network from a centralized controller.

NetConf (Enns et al., 2011) which uses Remote Procedure Call (RPC)
paradigm, is a protocol that defines a simple mechanism by which net-
work devices can be managed, configuration data can be retrieved, and
new configuration data can be uploaded and manipulated. One of the
key aspects of NetConf is that it closely mirrors the functionality of the
management protocol to the native functionality of the device which
directly reduces cost and allows timely access to new features. This
proposal existed before SDN, but just like OpenFlow it also provides a
straightforward API. This API can be used by applications to send and
receive full or partial configuration datasets.

Segment routing allows the addition of state information to packet
headers. This reduces the configuration overhead at nodes and results
in a faster and simpler service setup. SRv6 (Ventre et al., 2018) is a
similar SDN based segment routing approach for IPv6, while employing
gRPC, REST, NETCONF, and SSH/CLI. The configuration of SRv6 rules
in the devices is decomposed into two parts. One is the communica-
tion protocol which is used to send the requests to the SRv6 manager
running at the node. The other part helps in the local configuration
of the rules which uses the controller requests sent to SRv6 manager.
Unlike OpenFlow, the controller does not interact with all the edge and
core switches for topology discovery and flow rule installation, rather it
uses OSPF v3 for topology discovery. The primary benefit is simplified
configuration.

Insights: It is interesting to note that although ForCES was sup-
ported by IETF, it did not gain the industry confidence. The major rea-
son was the vast deployment of and support from multiple developers
and hardware vendors. Table 3 presents a summary of all the Open-
Flow independent proposals with their objectives, solutions, and bene-
fits. Some major benefits of ForCES over OpenFlow are its extensibility
as well as no restriction on device specifications. It offers a rich set of
features but lacks in open source support. Similarly, OpFlex restricts
programming in networks which is a key feature of SDN. NetConf, on
the other hand, is not a purpose-built interface for SDN, thus it does not
provide enough flexibility. SRv6 minimizes the configuration in seg-
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Table 2
Summary of comparison between OpenFlow and ForCES.
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Southbound Interface Standardizing Body Protocol Used  Determinants Extensibility ~ IP Versions Support
ForCES (Haleplidis et al., 2015) IETF (Internet Engineering Task Force, 2020)  SCTP Logical Functional Block  Yes IPv4
OpenFlow (McKeown et al., 2008)  ONF (ONF, 2020) TCP Match Fields and Actions  No IPv4 and IPv6
Table 3
Summary of OpenFlow independent SBI proposals.
Literature Objective Solution Benefits

ForCES (Haleplidis et al.,
2015)

Separation of Control
and Forwarding
Element in same
Network Element

Distribute Complexity
and Improved
Scalability

Reduced Complexity and
Enhance Performance

OpFlex (Smith et al.,
2020)

NetConf (Enns et al.,
2011)

SRv6 (Ventre et al.,
2018)

Minimize Configuration
Overhead

Enables Data and Control
Plane separation using
traditional network

Logical Function Block

elements

Declarative Policy Model ~ Enhanced Scalability

Close to native
functionality of switch
and reduces cost

Provides faster and
simpler configuration

Remote Procedure Call
(RPC)

Coexistance of Multiple
Protocols

ment routing for IPv6, however, it is not directly comparable to Open-
Flow protocol.

3.4. Southbound APIs and perception plane

Internet of Things and wireless sensor networks are connected at
the edge of a network and are considered beyond vSwitches. From the
SDN perspective, they fall in the perception plane as shown in Fig. 3.
Perception plane can be considered as an extension of data plane where
devices are not completely OF compliant, hence many solutions have
tried to extend OF to such devices. Here we classify these solutions for
sensor networks and IoT networks.

3.4.1. SBI for wireless sensor networks

The development of smart sensors has enabled the monitoring of
physical and environmental factors in numerous use cases. Software
Defined Wireless Sensor Networking (SDWSN) (Kobo et al., 2017) is a
relatively new paradigm for Low Rate-Wireless Personal Area Network
which can be realized by infusing the SDN model into WSNs. South-
bound Interface plays an integral role in SDN, but it is very hard to
implement in SDWSN because of the following basic reasons:

» Matching fields in OpenFlow address centric, and flow entries
are installed using the source IP and destination IP. Whereas,
WSNs is data-centric, where data acquisition is more important
than the source of data. Hence, flow creation is challenging in
WSNEs.

Addressing in WSNs is not IP-based which prevents SDWSN SBI
from creating flow entries. Moreover, it becomes hard to estab-
lish a TCP/IP based secure channel in SDWSN.

To install or uninstall flows on sensor devices that are limited in
size and memory, it may introduce overhead on the communica-
tion channel.

Due to the device constraints, routing algorithms of WSNs are
quite different from data centers or other networks. Hence, the
topological information needed is more detailed and may not be
represented by OpenFlow headers.

Sensor OpenFlow (SOF) (Luo et al., 2012) is based on standard
OpenFlow but modified to the requirements of low capacity sen-
sor nodes. It addresses challenges like; flow creation, secure channel
between the control plane and data plane, control traffic overhead,
and in-network processing, etc. To install the flows on sensor network

devices, it redefines the flow tables due to special addressing schemes
of WSNs. Flow tables are categorized into two classes: Class1 contains
compact network unique addresses as 16-bit addresses in ZigBee, and
Class2 uses concatenated attribute-value pairs. Class1 is handled by the
use of OpenFlow eXtensible Match (OXM), a TLV format by adding two
new addresses as OXM_SOF_Source and OXM_SOF _Destination. Another
solution for this problem is to use ulP and ulPv6. ulP is an implemen-
tation of IPv4 in the Contiki operating system normally used for WSNs
and the Internet of Things. Just like an OpenFlow secure channel, SOF
suggests either to use Transport Protocol directly in WSNs or channels
that can be supplied through uIP or ulPv6. To curb the control traffic
between data and control planes, it proposed a customized solution of
Control-Message Quenching (CMQ). However, the main focus was on
the message type, packet format, and operations, hence authors did not
provide any performance evaluation.

Software Defined Wireless Networks (SDWNs) (Costanzo et al.,
2012) proposed some significant features to reduce energy consump-
tion in WSNs by introducing duty cycles and in-network data aggre-
gation. Another significant feature of SDWNs is to support the flex-
ible definition of rules. Duty cycles are used to reduce energy con-
sumption by turning the radio off when it is not being used. Another
approach used to reduce energy consumption is in-network data aggre-
gation. Unlike traditional OpenFlow, flexible flow entries are required
for SDWNs because of its nature. SDWNs protocol architecture uses
generic nodes as well as a sink node. All generic nodes run physical
and MAC layer functionalities. The forwarding layer which is on top
of the MAC layer is responsible to treat a packet as specified by the
controller. All the generic nodes are connected to sink node(s) which
has the same architecture as generic nodes except a few functionalities.
A sink node has more computational and communication capabilities.
Therefore, sinks are executed in Linux based embedded system. Embed-
ded systems and sinks are connected through USB, RS232, or other
interfaces. Another feature of the sink is to use a virtualizer with the
responsibility of collecting information about generic nodes to build
a detailed representation of network topology. Same as SOF, SDWNs
also did not provide any performance evaluation and mainly focused
on architectural details. Hence, actual performance is still unknown and
maybe a research direction for the community.

SDN for Wireless SEnsors (SDN WISE) (Galluccio et al., 2015) goes
one step further as compared to previous studies, and is implemented
in OMNet++ with the objectives of reducing communication among
sensor nodes to/from SDN controller and making sensor nodes pro-
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grammable as a finite state machine, unlike standard OpenFlow which
is stateless. In the control layer, it uses WISE Visor, which has Topology
Manager for the collection of local information from the nodes and for-
wards it to the controller in the form of a graph with the topographic
information, energy levels, and SNR of nodes. In the data plane, In-
Networking Packet Processor is responsible for data aggregation and
other in-network processing to reduce the overhead. Between control
and data plane, there is an adaptation layer which is responsible for
formatting the messages received from sinks in such a way that they
can be handled by WISE Visor and vice versa. An application of SDN
WISE is in (Anadiotis et al., 2018) where a unified system is realized,
which enables communication of heterogeneous devices under a sin-
gle network operating system, by adding subsystems like Sensor Node,
Sensor Flow Rules, and Sensor Packet Subsystem.

A recent proposal of HUBs-Flow (Cicioglu and CalhanHubsflow,
2019) is a southbound interface for SDN based Wireless Body Area
Network (SDN-WBAN) which supports IEEE 802.15.6. This technique
uses Hello and Echo control messages between the control plane and
Hubs (which connect to body sensors and collect data), to piggyback
information such as addresses, slot information, packet size, and packet
priorities. Using this information, the SD-WBAN controller installs flow
rules on HUBs. Similar to SDN-WISE, HUBsFlow also supports the duty
cycle approach.

Insights: Table 4 summarizes the feature based comparison of dif-
ferent southbound interfaces for WSNs proposals. SOF and SDWN pro-
vide theoretical details, whereas SDN-WISE and HUBsFlow provided
practical implementations. Nodes in sensor networks are susceptible
to the movement which can cause path variation during packet trans-
mission. It is very important to manage and monitor the movement of
different nodes. One of the major challenges of SDN is to handle the
effect of nodes entering or leaving the network. Another challenge is
to build paths using different metrics (i.e. node energy and capability).
The interface in such cases should be able to optimally gather required
information for the controller. Moreover, controller placement in case
of a wireless southbound interface is another research area (Dvir et al.,
2019).

3.4.2. SBI for Internet of Things

Smart cities, smart grids, and intelligent transportation has
expanded the Internet of Things domain significantly. IoT networks are
not just sensor networks, rather they are more complex and implement
WSNs as a sub-part of the whole ecosystem. Due to a large number of
devices connected to the Internet, there are several challenges in [oT:
scalability, connectivity, big data, security, and heterogeneity, etc. SDN
provides a centralized controller and high-level management which
hides the complexity to provide solutions for above-discussed prob-
lems. Implementation of SDN in IoT networks resolves several issues
but introduces some new challenges.

» Device Heterogeneity: IoT devices are very diverse in nature
and may use different types of technologies. Their capabilities
also may vary, which requires new types of software-defined
solutions, including controllers, virtual switches or SDGateways,
and southbound interfaces.

Interface and Topological Diversity: Each IoT device may have
multiple communication technologies, e.g. WiFi, BLE, 5G, etc.
As the flow installation on such a network is not simple, hence
the southbound interfaces have to adapt. Moreover, SBIs also
should be able to work with hybrid wired and multi-hop wireless
networks.

Protocol Integration: Each technology in IoT may have its
packet format and processing rules. Flow installation with such
a variety of protocols is a very challenging task.

To address these challenges, an OpenFlow like solution is required
for IoT using SDN. There are several solutions available in the literature,
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but most of them do not resolve all the problems. Table 5 presents a
summary of these proposals.

Salman et al. (2015) proposed architecture for implementing SDN
in IoT and proposed a layered architecture to overcome problems like;
scalability, big data, heterogeneity, and security. The bottommost layer
is a device layer with different IoT devices and identifiers to differen-
tiate them. The network layer is used to overcome the heterogeneity
by using Software Defined Gateways (SD Gateways). SD Gateways can
communicate with IoT devices using different technologies. An exten-
sion to OpenFlow is recommended but no specifications are discussed.
However, for configuration purposes, some management protocols (e.g.
NetConf, OF-Config, and Yang) are recommended. Another main fea-
ture of these SD Gateways is to reduce the power consumption because
of big data problems. The control layer consists of SDN controllers with
the responsibility of collecting topology information, path calculation,
and forwarding rules. Security rules are defined using algorithms but
no details on flow rule installation are discussed. At the topmost layer,
there are different network applications.

Li et al. (2016) address the issues of interoperability, resource shar-
ing, and flexibility for applications and services. It proposes a layered
architecture where IoT devices are at the bottom layer and are referred
to as the device layer. These devices are connected to switches or gate-
ways which are at the communication layer. A module named Data
Processing and Storage Center is also in the communication layer and
controlled by the SDN controller. This module is capable of storing
selective data of IoT devices and sinks, and also responsible for data
format conversion. On top of the communication layer, there is a com-
puting layer where SDN controllers are placed. The service layer is the
topmost layer. Besides the data forwarding capability of switches and
gateways, they can also store or cache local data and process it under
the instruction of the SDN controller. An extension in OpenFlow ver-
sion 1.0 is done by adding two flags. These flags mark data format and
caching capabilities of the switch.

To resolve the problems of scalability and mobility, Ojo et al. (2016)
provide a general architecture for IoT with the coupling of SDN and
NFV. This architecture contains four layers; perception layer, data layer,
control layer, and application layer. Devices in perception layer sense
data and forward to data layer by using Software Defined enabled gate-
ways. These Software Defined enabled gateways to provide manage-
ment flexibility, as underlying devices belong to different technologies.
Apart from these Software Defined gateways, there are also switches in
the data plane. These devices can be programmed through controllers
(e.g. ONOS, OpenDaylight) by using a southbound interface (e.g. Open-
Flow, OvSDB, NetConf, BGP, etc.). This study lacks implementations
and does not elaborate on how OF will be used beyond the gateway
into the perception plane.

Multi-network INformation Architecture (MINA) (Qin et al., 2014)
is another method to resolve the issues of heterogeneity and interop-
erability. It proposes a controller architecture and an OpenFlow like
protocol. In the controller, it uses data collection components that col-
lect network information and stores it in databases. This information
is then utilized by other components of the controller. Among these
components, there is an admin/analyst API which allows governing dif-
ferent control processes by controller itself as well as external programs.
Other components are; task-resource matching, service solution specifi-
cation, and flow scheduling. A task can be realized by a single service
or multiple services. Task-resource matching specifies, which devices or
applications can be used to complete a particular task. After matching,
the controller maps the characteristics of devices and services involved
in that matching by using the service solution specification compo-
nent. It also handles specific requirements for devices or application
constraints. These requirements are taken by the flow scheduling com-
ponent to schedule flows. This component uses an algorithm to resolve
the complexity due to the heterogeneity of different technologies. An
OpenFlow like protocol is used in the communication layer for flow
scheduling and data collection purposes. However, detailed discussion
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Table 4
Summary of SBI proposals for wireless sensor networks.
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Features SOF (Luo et al., 2012)  SDWN (Costanzo et al., 2012) ~ SDN-WISE (Galluccio et al., 2015)  HUBsFlow (Cicioglu and GalhanHubsflow, 2019)
Flow Creation Yes Yes Yes Yes
Field Matching Yes Yes Yes Yes
Action No Yes Yes Yes
Statistics No No Yes Yes
Data Aggregation No Yes Yes No
In-Network Processing Yes Yes Yes No
Duty Cycles Reductions No Yes Yes Yes
Mobility Management No No No No
Multi-metric Paths No No Partial No
Implementation Available No No Yes Yes

and working of it are not discussed in the paper.

CENSOR (Conti et al. 2019) architecture aims at providing secu-
rity and enhances the performance in heterogeneous IoT networks. It
uses the IoT controller, an IoT agent, and a specialized software remote
attestation component for security. The lowest plane in CENSOR is the
object plane which consists of IoT devices. IoT agent is a small piece
of software that runs in these devices. This software is executed in a
Trusted Platform Module (TPM) and attested periodically. Above the
object plane is the data plane which has OpenFlow enabled devices.
Similar to the object plane, devices in the data plane are also attested
which makes a hierarchy. However, the communication between the
object plane and data plane or object to the control plane is not entirely
defined. Extension of to objects maybe future research direction in this
regard.

In (Desai et al., 2016) Desai et al. provided a framework where an
OpenFlow Management Device is responsible to provide communica-
tion between IoT devices and OpenFlow enabled switches. This device
runs its own Linux based operating system. The bottom layer consists
of hardware and protocols and these components are the base of this
device. The device is claimed to be extensible to more protocols. Above
this layer are libraries that provide different functionalities, such as
security, web connection, and SQL. The application framework layer
is on top of libraries with the resource manager, location manager,
activity manager, and above this there is an application layer. Data
plane devices communicate with the control plane as well as with this
device using the OpenFlow protocol. Flow installation mechanisms, in
this study, are not discussed.

Insights: Table 5 gives a comparative analysis of the proposals dis-
cussed in this section. Most of the literature related to IoT has focused
on two parts: Controller and API. We find that more preference is given
to controller design and it is assumed that OpenFlow or something sim-
ilar will be able to communicate with the devices. The objective of this
paper is limited to APIs, hence we limit this section to those works
which have elaborated (even in passing) on the SBIs. It is important
to highlight the necessity of SBIs specific for IoT devices. OF was not
designed for mobile low capacity heterogeneous IoT devices. Hence,
firstly it is important to evaluate the effect of communication perfor-
mance in such networks, and then perhaps a more lightweight and
customized API can be developed targeted for IoT networks. In IoT,
OpenFlow is not limited to controller and vSwitch. It has to extend its
reach to IoT devices. Hence, solutions which go beyond the SDN gate-
ways is an important research area. Similarly, the SBI also needs to offer
functionality other than flow installation.

3.5. SBIs and security challenges

OpenFlow is predominantly the most used SBI, however, Transport
Layer Security (TLS) is optional in its configuration, which makes net-
work infrastructure vulnerable. TLS is considered a standardized proto-
col however, for various reasons it is still open to attacks, particularly
Man-in-The-Middle (MiTM). To secure OF based switch to controller

communication, Agborubere et al. (Agborubere and Sanchez-Velazquez,
2017) proposed enhancement in TLS by presenting the client’s certifi-
cate to the server for authentication. The server may send a randomized
re-verification request to the client along with a time frame. Moreover,
the client’s Hello message ID can be used for verification.

Kloti et al. (KIot